Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnelb Structured version   Visualization version   Unicode version

Theorem lshpnelb 34271
Description: The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
Hypotheses
Ref Expression
lshpnelb.v  |-  V  =  ( Base `  W
)
lshpnelb.n  |-  N  =  ( LSpan `  W )
lshpnelb.p  |-  .(+)  =  (
LSSum `  W )
lshpnelb.h  |-  H  =  (LSHyp `  W )
lshpnelb.w  |-  ( ph  ->  W  e.  LVec )
lshpnelb.u  |-  ( ph  ->  U  e.  H )
lshpnelb.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lshpnelb  |-  ( ph  ->  ( -.  X  e.  U  <->  ( U  .(+)  ( N `  { X } ) )  =  V ) )

Proof of Theorem lshpnelb
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lshpnelb.u . . . . . 6  |-  ( ph  ->  U  e.  H )
2 lshpnelb.v . . . . . . 7  |-  V  =  ( Base `  W
)
3 lshpnelb.n . . . . . . 7  |-  N  =  ( LSpan `  W )
4 eqid 2622 . . . . . . 7  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
5 lshpnelb.p . . . . . . 7  |-  .(+)  =  (
LSSum `  W )
6 lshpnelb.h . . . . . . 7  |-  H  =  (LSHyp `  W )
7 lshpnelb.w . . . . . . . 8  |-  ( ph  ->  W  e.  LVec )
8 lveclmod 19106 . . . . . . . 8  |-  ( W  e.  LVec  ->  W  e. 
LMod )
97, 8syl 17 . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
102, 3, 4, 5, 6, 9islshpsm 34267 . . . . . 6  |-  ( ph  ->  ( U  e.  H  <->  ( U  e.  ( LSubSp `  W )  /\  U  =/=  V  /\  E. v  e.  V  ( U  .(+) 
( N `  {
v } ) )  =  V ) ) )
111, 10mpbid 222 . . . . 5  |-  ( ph  ->  ( U  e.  (
LSubSp `  W )  /\  U  =/=  V  /\  E. v  e.  V  ( U  .(+)  ( N `  { v } ) )  =  V ) )
1211simp3d 1075 . . . 4  |-  ( ph  ->  E. v  e.  V  ( U  .(+)  ( N `
 { v } ) )  =  V )
1312adantr 481 . . 3  |-  ( (
ph  /\  -.  X  e.  U )  ->  E. v  e.  V  ( U  .(+) 
( N `  {
v } ) )  =  V )
14 simp1l 1085 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  ph )
15 simp2 1062 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  v  e.  V )
164lsssssubg 18958 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  ( LSubSp `  W )  C_  (SubGrp `  W ) )
179, 16syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( LSubSp `  W )  C_  (SubGrp `  W )
)
184, 6, 9, 1lshplss 34268 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
1917, 18sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
20 lshpnelb.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  V )
212, 4, 3lspsncl 18977 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
229, 20, 21syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
2317, 22sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  ( N `  { X } )  e.  (SubGrp `  W ) )
245lsmub1 18071 . . . . . . . . . 10  |-  ( ( U  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W ) )  ->  U  C_  ( U  .(+)  ( N `  { X } ) ) )
2519, 23, 24syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  U  C_  ( U  .(+) 
( N `  { X } ) ) )
2625adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  X  e.  U )  ->  U  C_  ( U  .(+)  ( N `
 { X }
) ) )
275lsmub2 18072 . . . . . . . . . . . 12  |-  ( ( U  e.  (SubGrp `  W )  /\  ( N `  { X } )  e.  (SubGrp `  W ) )  -> 
( N `  { X } )  C_  ( U  .(+)  ( N `  { X } ) ) )
2819, 23, 27syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  C_  ( U  .(+)  ( N `  { X } ) ) )
292, 3lspsnid 18993 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
309, 20, 29syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( N `
 { X }
) )
3128, 30sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( U 
.(+)  ( N `  { X } ) ) )
32 nelne1 2890 . . . . . . . . . 10  |-  ( ( X  e.  ( U 
.(+)  ( N `  { X } ) )  /\  -.  X  e.  U )  ->  ( U  .(+)  ( N `  { X } ) )  =/=  U )
3331, 32sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  -.  X  e.  U )  ->  ( U  .(+)  ( N `  { X } ) )  =/=  U )
3433necomd 2849 . . . . . . . 8  |-  ( (
ph  /\  -.  X  e.  U )  ->  U  =/=  ( U  .(+)  ( N `
 { X }
) ) )
35 df-pss 3590 . . . . . . . 8  |-  ( U 
C.  ( U  .(+)  ( N `  { X } ) )  <->  ( U  C_  ( U  .(+)  ( N `
 { X }
) )  /\  U  =/=  ( U  .(+)  ( N `
 { X }
) ) ) )
3626, 34, 35sylanbrc 698 . . . . . . 7  |-  ( (
ph  /\  -.  X  e.  U )  ->  U  C.  ( U  .(+)  ( N `
 { X }
) ) )
37363ad2ant1 1082 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  U  C.  ( U  .(+)  ( N `  { X } ) ) )
384, 5lsmcl 19083 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  U  e.  ( LSubSp `  W )  /\  ( N `  { X } )  e.  (
LSubSp `  W ) )  ->  ( U  .(+)  ( N `  { X } ) )  e.  ( LSubSp `  W )
)
399, 18, 22, 38syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( U  .(+)  ( N `
 { X }
) )  e.  (
LSubSp `  W ) )
402, 4lssss 18937 . . . . . . . . . . 11  |-  ( ( U  .(+)  ( N `  { X } ) )  e.  ( LSubSp `  W )  ->  ( U  .(+)  ( N `  { X } ) ) 
C_  V )
4139, 40syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( U  .(+)  ( N `
 { X }
) )  C_  V
)
4241adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( U  .(+) 
( N `  {
v } ) )  =  V )  -> 
( U  .(+)  ( N `
 { X }
) )  C_  V
)
43 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  ( U  .(+) 
( N `  {
v } ) )  =  V )  -> 
( U  .(+)  ( N `
 { v } ) )  =  V )
4442, 43sseqtr4d 3642 . . . . . . . 8  |-  ( (
ph  /\  ( U  .(+) 
( N `  {
v } ) )  =  V )  -> 
( U  .(+)  ( N `
 { X }
) )  C_  ( U  .(+)  ( N `  { v } ) ) )
4544adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  ( U  .(+) 
( N `  { X } ) )  C_  ( U  .(+)  ( N `
 { v } ) ) )
46453adant2 1080 . . . . . 6  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  ( U  .(+) 
( N `  { X } ) )  C_  ( U  .(+)  ( N `
 { v } ) ) )
477adantr 481 . . . . . . 7  |-  ( (
ph  /\  v  e.  V )  ->  W  e.  LVec )
4818adantr 481 . . . . . . 7  |-  ( (
ph  /\  v  e.  V )  ->  U  e.  ( LSubSp `  W )
)
4939adantr 481 . . . . . . 7  |-  ( (
ph  /\  v  e.  V )  ->  ( U  .(+)  ( N `  { X } ) )  e.  ( LSubSp `  W
) )
50 simpr 477 . . . . . . 7  |-  ( (
ph  /\  v  e.  V )  ->  v  e.  V )
512, 4, 3, 5, 47, 48, 49, 50lsmcv 19141 . . . . . 6  |-  ( ( ( ph  /\  v  e.  V )  /\  U  C.  ( U  .(+)  ( N `
 { X }
) )  /\  ( U  .(+)  ( N `  { X } ) ) 
C_  ( U  .(+)  ( N `  { v } ) ) )  ->  ( U  .(+)  ( N `  { X } ) )  =  ( U  .(+)  ( N `
 { v } ) ) )
5214, 15, 37, 46, 51syl211anc 1332 . . . . 5  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  ( U  .(+) 
( N `  { X } ) )  =  ( U  .(+)  ( N `
 { v } ) ) )
53 simp3 1063 . . . . 5  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  ( U  .(+) 
( N `  {
v } ) )  =  V )
5452, 53eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  -.  X  e.  U )  /\  v  e.  V  /\  ( U  .(+)  ( N `
 { v } ) )  =  V )  ->  ( U  .(+) 
( N `  { X } ) )  =  V )
5554rexlimdv3a 3033 . . 3  |-  ( (
ph  /\  -.  X  e.  U )  ->  ( E. v  e.  V  ( U  .(+)  ( N `
 { v } ) )  =  V  ->  ( U  .(+)  ( N `  { X } ) )  =  V ) )
5613, 55mpd 15 . 2  |-  ( (
ph  /\  -.  X  e.  U )  ->  ( U  .(+)  ( N `  { X } ) )  =  V )
579adantr 481 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  W  e.  LMod )
581adantr 481 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  U  e.  H )
5920adantr 481 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  X  e.  V )
60 simpr 477 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  ( U  .(+)  ( N `  { X } ) )  =  V )
612, 3, 5, 6, 57, 58, 59, 60lshpnel 34270 . 2  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  -.  X  e.  U )
6256, 61impbida 877 1  |-  ( ph  ->  ( -.  X  e.  U  <->  ( U  .(+)  ( N `  { X } ) )  =  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574    C. wpss 3575   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857  SubGrpcsubg 17588   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264
This theorem is referenced by:  lshpnel2N  34272  l1cvpat  34341  dochexmidat  36748
  Copyright terms: Public domain W3C validator