| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lzenom | Structured version Visualization version Unicode version | ||
| Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| lzenom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 11386 |
. . . 4
| |
| 2 | difexg 4808 |
. . . 4
| |
| 3 | 1, 2 | mp1i 13 |
. . 3
|
| 4 | nnex 11026 |
. . . 4
| |
| 5 | 4 | a1i 11 |
. . 3
|
| 6 | ovex 6678 |
. . . 4
| |
| 7 | 6 | 2a1i 12 |
. . 3
|
| 8 | ovex 6678 |
. . . 4
| |
| 9 | 8 | 2a1i 12 |
. . 3
|
| 10 | simpl 473 |
. . . . . . . . . 10
| |
| 11 | 10 | peano2zd 11485 |
. . . . . . . . 9
|
| 12 | simprl 794 |
. . . . . . . . 9
| |
| 13 | 11, 12 | zsubcld 11487 |
. . . . . . . 8
|
| 14 | zre 11381 |
. . . . . . . . . 10
| |
| 15 | 14 | ad2antrl 764 |
. . . . . . . . 9
|
| 16 | 11 | zred 11482 |
. . . . . . . . 9
|
| 17 | 1red 10055 |
. . . . . . . . 9
| |
| 18 | simprr 796 |
. . . . . . . . . 10
| |
| 19 | zcn 11382 |
. . . . . . . . . . . 12
| |
| 20 | 19 | adantr 481 |
. . . . . . . . . . 11
|
| 21 | ax-1cn 9994 |
. . . . . . . . . . 11
| |
| 22 | pncan 10287 |
. . . . . . . . . . 11
| |
| 23 | 20, 21, 22 | sylancl 694 |
. . . . . . . . . 10
|
| 24 | 18, 23 | breqtrrd 4681 |
. . . . . . . . 9
|
| 25 | 15, 16, 17, 24 | lesubd 10631 |
. . . . . . . 8
|
| 26 | 11 | zcnd 11483 |
. . . . . . . . . 10
|
| 27 | zcn 11382 |
. . . . . . . . . . 11
| |
| 28 | 27 | ad2antrl 764 |
. . . . . . . . . 10
|
| 29 | 26, 28 | nncand 10397 |
. . . . . . . . 9
|
| 30 | 29 | eqcomd 2628 |
. . . . . . . 8
|
| 31 | 13, 25, 30 | jca31 557 |
. . . . . . 7
|
| 32 | 31 | adantrr 753 |
. . . . . 6
|
| 33 | eleq1 2689 |
. . . . . . . . 9
| |
| 34 | breq2 4657 |
. . . . . . . . 9
| |
| 35 | 33, 34 | anbi12d 747 |
. . . . . . . 8
|
| 36 | oveq2 6658 |
. . . . . . . . 9
| |
| 37 | 36 | eqeq2d 2632 |
. . . . . . . 8
|
| 38 | 35, 37 | anbi12d 747 |
. . . . . . 7
|
| 39 | 38 | ad2antll 765 |
. . . . . 6
|
| 40 | 32, 39 | mpbird 247 |
. . . . 5
|
| 41 | simpl 473 |
. . . . . . . . . 10
| |
| 42 | 41 | peano2zd 11485 |
. . . . . . . . 9
|
| 43 | simprl 794 |
. . . . . . . . 9
| |
| 44 | 42, 43 | zsubcld 11487 |
. . . . . . . 8
|
| 45 | 42 | zred 11482 |
. . . . . . . . 9
|
| 46 | zre 11381 |
. . . . . . . . . 10
| |
| 47 | 46 | adantr 481 |
. . . . . . . . 9
|
| 48 | zre 11381 |
. . . . . . . . . 10
| |
| 49 | 48 | ad2antrl 764 |
. . . . . . . . 9
|
| 50 | 47 | recnd 10068 |
. . . . . . . . . . 11
|
| 51 | pncan2 10288 |
. . . . . . . . . . 11
| |
| 52 | 50, 21, 51 | sylancl 694 |
. . . . . . . . . 10
|
| 53 | simprr 796 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | eqbrtrd 4675 |
. . . . . . . . 9
|
| 55 | 45, 47, 49, 54 | subled 10630 |
. . . . . . . 8
|
| 56 | 42 | zcnd 11483 |
. . . . . . . . . 10
|
| 57 | zcn 11382 |
. . . . . . . . . . 11
| |
| 58 | 57 | ad2antrl 764 |
. . . . . . . . . 10
|
| 59 | 56, 58 | nncand 10397 |
. . . . . . . . 9
|
| 60 | 59 | eqcomd 2628 |
. . . . . . . 8
|
| 61 | 44, 55, 60 | jca31 557 |
. . . . . . 7
|
| 62 | 61 | adantrr 753 |
. . . . . 6
|
| 63 | eleq1 2689 |
. . . . . . . . 9
| |
| 64 | breq1 4656 |
. . . . . . . . 9
| |
| 65 | 63, 64 | anbi12d 747 |
. . . . . . . 8
|
| 66 | oveq2 6658 |
. . . . . . . . 9
| |
| 67 | 66 | eqeq2d 2632 |
. . . . . . . 8
|
| 68 | 65, 67 | anbi12d 747 |
. . . . . . 7
|
| 69 | 68 | ad2antll 765 |
. . . . . 6
|
| 70 | 62, 69 | mpbird 247 |
. . . . 5
|
| 71 | 40, 70 | impbida 877 |
. . . 4
|
| 72 | ellz1 37330 |
. . . . 5
| |
| 73 | 72 | anbi1d 741 |
. . . 4
|
| 74 | elnnz1 11403 |
. . . . . 6
| |
| 75 | 74 | a1i 11 |
. . . . 5
|
| 76 | 75 | anbi1d 741 |
. . . 4
|
| 77 | 71, 73, 76 | 3bitr4d 300 |
. . 3
|
| 78 | 3, 5, 7, 9, 77 | en2d 7991 |
. 2
|
| 79 | nnenom 12779 |
. 2
| |
| 80 | entr 8008 |
. 2
| |
| 81 | 78, 79, 80 | sylancl 694 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
| This theorem is referenced by: diophin 37336 diophren 37377 |
| Copyright terms: Public domain | W3C validator |