Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1mod0mod1 Structured version   Visualization version   Unicode version

Theorem m1mod0mod1 41339
Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
m1mod0mod1  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( ( A  - 
1 )  mod  N
)  =  0  <->  ( A  mod  N )  =  1 ) )

Proof of Theorem m1mod0mod1
StepHypRef Expression
1 recn 10026 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
2 npcan1 10455 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( A  -  1 )  +  1 )  =  A )
32eqcomd 2628 . . . . . . 7  |-  ( A  e.  CC  ->  A  =  ( ( A  -  1 )  +  1 ) )
41, 3syl 17 . . . . . 6  |-  ( A  e.  RR  ->  A  =  ( ( A  -  1 )  +  1 ) )
543ad2ant1 1082 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  A  =  ( ( A  -  1 )  +  1 ) )
65adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  A  =  ( ( A  -  1 )  +  1 ) )
76oveq1d 6665 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( A  mod  N )  =  ( ( ( A  -  1 )  +  1 )  mod  N ) )
8 simpr 477 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( A  -  1 )  mod 
N )  =  0 )
9 1mod 12702 . . . . . . . 8  |-  ( ( N  e.  RR  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
1093adant1 1079 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
1  mod  N )  =  1 )
1110adantr 481 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( 1  mod 
N )  =  1 )
128, 11oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( ( A  -  1 )  mod  N )  +  ( 1  mod  N
) )  =  ( 0  +  1 ) )
1312oveq1d 6665 . . . 4  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( ( ( A  -  1 )  mod  N )  +  ( 1  mod 
N ) )  mod 
N )  =  ( ( 0  +  1 )  mod  N ) )
14 peano2rem 10348 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
15143ad2ant1 1082 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  ( A  -  1 )  e.  RR )
16 1red 10055 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  1  e.  RR )
17 simpl 473 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  1  <  N )  ->  N  e.  RR )
18 0lt1 10550 . . . . . . . . . . 11  |-  0  <  1
19 0re 10040 . . . . . . . . . . . 12  |-  0  e.  RR
20 1re 10039 . . . . . . . . . . . 12  |-  1  e.  RR
21 lttr 10114 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <  N )  ->  0  <  N
) )
2219, 20, 21mp3an12 1414 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  (
( 0  <  1  /\  1  <  N )  ->  0  <  N
) )
2318, 22mpani 712 . . . . . . . . . 10  |-  ( N  e.  RR  ->  (
1  <  N  ->  0  <  N ) )
2423imp 445 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  1  <  N )  -> 
0  <  N )
2517, 24elrpd 11869 . . . . . . . 8  |-  ( ( N  e.  RR  /\  1  <  N )  ->  N  e.  RR+ )
26253adant1 1079 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  N  e.  RR+ )
2715, 16, 263jca 1242 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( A  -  1 )  e.  RR  /\  1  e.  RR  /\  N  e.  RR+ ) )
2827adantr 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( A  -  1 )  e.  RR  /\  1  e.  RR  /\  N  e.  RR+ ) )
29 modaddabs 12708 . . . . 5  |-  ( ( ( A  -  1 )  e.  RR  /\  1  e.  RR  /\  N  e.  RR+ )  ->  (
( ( ( A  -  1 )  mod 
N )  +  ( 1  mod  N ) )  mod  N )  =  ( ( ( A  -  1 )  +  1 )  mod 
N ) )
3028, 29syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( ( ( A  -  1 )  mod  N )  +  ( 1  mod 
N ) )  mod 
N )  =  ( ( ( A  - 
1 )  +  1 )  mod  N ) )
31 0p1e1 11132 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3231oveq1i 6660 . . . . . . 7  |-  ( ( 0  +  1 )  mod  N )  =  ( 1  mod  N
)
3332, 9syl5eq 2668 . . . . . 6  |-  ( ( N  e.  RR  /\  1  <  N )  -> 
( ( 0  +  1 )  mod  N
)  =  1 )
34333adant1 1079 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( 0  +  1 )  mod  N )  =  1 )
3534adantr 481 . . . 4  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( 0  +  1 )  mod 
N )  =  1 )
3613, 30, 353eqtr3d 2664 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( ( ( A  -  1 )  +  1 )  mod 
N )  =  1 )
377, 36eqtrd 2656 . 2  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( ( A  - 
1 )  mod  N
)  =  0 )  ->  ( A  mod  N )  =  1 )
38 simpr 477 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( A  mod  N )  =  1 )  -> 
( A  mod  N
)  =  1 )
3938eqcomd 2628 . . . . 5  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( A  mod  N )  =  1 )  -> 
1  =  ( A  mod  N ) )
4039oveq2d 6666 . . . 4  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( A  mod  N )  =  1 )  -> 
( A  -  1 )  =  ( A  -  ( A  mod  N ) ) )
4140oveq1d 6665 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( A  mod  N )  =  1 )  -> 
( ( A  - 
1 )  mod  N
)  =  ( ( A  -  ( A  mod  N ) )  mod  N ) )
42 simp1 1061 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  A  e.  RR )
4342, 26modcld 12674 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  ( A  mod  N )  e.  RR )
4443recnd 10068 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  ( A  mod  N )  e.  CC )
4544subidd 10380 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( A  mod  N
)  -  ( A  mod  N ) )  =  0 )
4645oveq1d 6665 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( ( A  mod  N )  -  ( A  mod  N ) )  mod  N )  =  ( 0  mod  N
) )
47 modsubmod 12728 . . . . . 6  |-  ( ( A  e.  RR  /\  ( A  mod  N )  e.  RR  /\  N  e.  RR+ )  ->  (
( ( A  mod  N )  -  ( A  mod  N ) )  mod  N )  =  ( ( A  -  ( A  mod  N ) )  mod  N ) )
4842, 43, 26, 47syl3anc 1326 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( ( A  mod  N )  -  ( A  mod  N ) )  mod  N )  =  ( ( A  -  ( A  mod  N ) )  mod  N ) )
49 0mod 12701 . . . . . 6  |-  ( N  e.  RR+  ->  ( 0  mod  N )  =  0 )
5026, 49syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
0  mod  N )  =  0 )
5146, 48, 503eqtr3d 2664 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( A  -  ( A  mod  N ) )  mod  N )  =  0 )
5251adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( A  mod  N )  =  1 )  -> 
( ( A  -  ( A  mod  N ) )  mod  N )  =  0 )
5341, 52eqtrd 2656 . 2  |-  ( ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  /\  ( A  mod  N )  =  1 )  -> 
( ( A  - 
1 )  mod  N
)  =  0 )
5437, 53impbida 877 1  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  1  <  N )  ->  (
( ( A  - 
1 )  mod  N
)  =  0  <->  ( A  mod  N )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   RR+crp 11832    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  dfodd4  41571  difmodm1lt  42317
  Copyright terms: Public domain W3C validator