MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatf1 Structured version   Visualization version   Unicode version

Theorem mat2pmatf1 20534
Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t  |-  T  =  ( N matToPolyMat  R )
mat2pmatbas.a  |-  A  =  ( N Mat  R )
mat2pmatbas.b  |-  B  =  ( Base `  A
)
mat2pmatbas.p  |-  P  =  (Poly1 `  R )
mat2pmatbas.c  |-  C  =  ( N Mat  P )
mat2pmatbas0.h  |-  H  =  ( Base `  C
)
Assertion
Ref Expression
mat2pmatf1  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  T : B -1-1-> H )

Proof of Theorem mat2pmatf1
Dummy variables  x  y  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.t . . 3  |-  T  =  ( N matToPolyMat  R )
2 mat2pmatbas.a . . 3  |-  A  =  ( N Mat  R )
3 mat2pmatbas.b . . 3  |-  B  =  ( Base `  A
)
4 mat2pmatbas.p . . 3  |-  P  =  (Poly1 `  R )
5 mat2pmatbas.c . . 3  |-  C  =  ( N Mat  P )
6 mat2pmatbas0.h . . 3  |-  H  =  ( Base `  C
)
71, 2, 3, 4, 5, 6mat2pmatf 20533 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  T : B --> H )
8 simpl 473 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  y  e.  B )  ->  x  e.  B )
98anim2i 593 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( N  e.  Fin  /\  R  e.  Ring )  /\  x  e.  B
) )
10 df-3an 1039 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  x  e.  B )  <->  ( ( N  e.  Fin  /\  R  e.  Ring )  /\  x  e.  B ) )
119, 10sylibr 224 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  x  e.  B ) )
12 eqid 2622 . . . . . . . . 9  |-  (algSc `  P )  =  (algSc `  P )
131, 2, 3, 4, 12mat2pmatvalel 20530 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  x  e.  B )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( i
( T `  x
) j )  =  ( (algSc `  P
) `  ( i
x j ) ) )
1411, 13sylan 488 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i ( T `  x ) j )  =  ( (algSc `  P ) `  (
i x j ) ) )
15 simpr 477 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  y  e.  B )  ->  y  e.  B )
1615anim2i 593 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( N  e.  Fin  /\  R  e.  Ring )  /\  y  e.  B
) )
17 df-3an 1039 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  y  e.  B )  <->  ( ( N  e.  Fin  /\  R  e.  Ring )  /\  y  e.  B ) )
1816, 17sylibr 224 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  y  e.  B ) )
191, 2, 3, 4, 12mat2pmatvalel 20530 . . . . . . . 8  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  y  e.  B )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( i
( T `  y
) j )  =  ( (algSc `  P
) `  ( i
y j ) ) )
2018, 19sylan 488 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i ( T `  y ) j )  =  ( (algSc `  P ) `  (
i y j ) ) )
2114, 20eqeq12d 2637 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
( i ( T `
 x ) j )  =  ( i ( T `  y
) j )  <->  ( (algSc `  P ) `  (
i x j ) )  =  ( (algSc `  P ) `  (
i y j ) ) ) )
22 eqid 2622 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
23 eqid 2622 . . . . . . . . 9  |-  ( Base `  P )  =  (
Base `  P )
244, 12, 22, 23ply1sclf1 19659 . . . . . . . 8  |-  ( R  e.  Ring  ->  (algSc `  P ) : (
Base `  R ) -1-1-> ( Base `  P
) )
2524ad3antlr 767 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (algSc `  P ) : (
Base `  R ) -1-1-> ( Base `  P
) )
26 simprl 794 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  i  e.  N )
27 simprr 796 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  j  e.  N )
28 simplrl 800 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  x  e.  B )
292, 22, 3, 26, 27, 28matecld 20232 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i x j )  e.  ( Base `  R
) )
30 simplrr 801 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  y  e.  B )
312, 22, 3, 26, 27, 30matecld 20232 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
i y j )  e.  ( Base `  R
) )
32 f1veqaeq 6514 . . . . . . 7  |-  ( ( (algSc `  P ) : ( Base `  R
) -1-1-> ( Base `  P
)  /\  ( (
i x j )  e.  ( Base `  R
)  /\  ( i
y j )  e.  ( Base `  R
) ) )  -> 
( ( (algSc `  P ) `  (
i x j ) )  =  ( (algSc `  P ) `  (
i y j ) )  ->  ( i
x j )  =  ( i y j ) ) )
3325, 29, 31, 32syl12anc 1324 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
( (algSc `  P
) `  ( i
x j ) )  =  ( (algSc `  P ) `  (
i y j ) )  ->  ( i
x j )  =  ( i y j ) ) )
3421, 33sylbid 230 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B ) )  /\  ( i  e.  N  /\  j  e.  N
) )  ->  (
( i ( T `
 x ) j )  =  ( i ( T `  y
) j )  -> 
( i x j )  =  ( i y j ) ) )
3534ralimdvva 2964 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( A. i  e.  N  A. j  e.  N  ( i ( T `
 x ) j )  =  ( i ( T `  y
) j )  ->  A. i  e.  N  A. j  e.  N  ( i x j )  =  ( i y j ) ) )
361, 2, 3, 4, 5, 6mat2pmatbas0 20532 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  x  e.  B )  ->  ( T `  x )  e.  H )
3711, 36syl 17 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( T `  x )  e.  H )
381, 2, 3, 4, 5, 6mat2pmatbas0 20532 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  y  e.  B )  ->  ( T `  y )  e.  H )
3918, 38syl 17 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  ( T `  y )  e.  H )
405, 6eqmat 20230 . . . . 5  |-  ( ( ( T `  x
)  e.  H  /\  ( T `  y )  e.  H )  -> 
( ( T `  x )  =  ( T `  y )  <->  A. i  e.  N  A. j  e.  N  ( i ( T `
 x ) j )  =  ( i ( T `  y
) j ) ) )
4137, 39, 40syl2anc 693 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( T `  x
)  =  ( T `
 y )  <->  A. i  e.  N  A. j  e.  N  ( i
( T `  x
) j )  =  ( i ( T `
 y ) j ) ) )
422, 3eqmat 20230 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  =  y  <->  A. i  e.  N  A. j  e.  N  ( i x j )  =  ( i y j ) ) )
4342adantl 482 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  =  y  <->  A. i  e.  N  A. j  e.  N  ( i
x j )  =  ( i y j ) ) )
4435, 41, 433imtr4d 283 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( T `  x
)  =  ( T `
 y )  ->  x  =  y )
)
4544ralrimivva 2971 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A. x  e.  B  A. y  e.  B  ( ( T `  x )  =  ( T `  y )  ->  x  =  y ) )
46 dff13 6512 . 2  |-  ( T : B -1-1-> H  <->  ( T : B --> H  /\  A. x  e.  B  A. y  e.  B  (
( T `  x
)  =  ( T `
 y )  ->  x  =  y )
) )
477, 45, 46sylanbrc 698 1  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  T : B -1-1-> H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   Ringcrg 18547  algSccascl 19311  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mat2pmat 20512
This theorem is referenced by:  m2cpmf1  20548
  Copyright terms: Public domain W3C validator