Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninc Structured version   Visualization version   Unicode version

Theorem meaiuninc 40698
Description: Measures are continuous from below (bounded case): if  E is a sequence of non-decreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiuninc.m  |-  ( ph  ->  M  e. Meas )
meaiuninc.n  |-  ( ph  ->  N  e.  ZZ )
meaiuninc.z  |-  Z  =  ( ZZ>= `  N )
meaiuninc.e  |-  ( ph  ->  E : Z --> dom  M
)
meaiuninc.i  |-  ( (
ph  /\  n  e.  Z )  ->  ( E `  n )  C_  ( E `  (
n  +  1 ) ) )
meaiuninc.x  |-  ( ph  ->  E. x  e.  RR  A. n  e.  Z  ( M `  ( E `
 n ) )  <_  x )
meaiuninc.s  |-  S  =  ( n  e.  Z  |->  ( M `  ( E `  n )
) )
Assertion
Ref Expression
meaiuninc  |-  ( ph  ->  S  ~~>  ( M `  U_ n  e.  Z  ( E `  n ) ) )
Distinct variable groups:    n, E, x    n, M, x    n, N, x    n, Z, x    ph, n, x
Allowed substitution hints:    S( x, n)

Proof of Theorem meaiuninc
Dummy variables  k 
i  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiuninc.s . . . 4  |-  S  =  ( n  e.  Z  |->  ( M `  ( E `  n )
) )
2 fveq2 6191 . . . . . 6  |-  ( n  =  m  ->  ( E `  n )  =  ( E `  m ) )
32fveq2d 6195 . . . . 5  |-  ( n  =  m  ->  ( M `  ( E `  n ) )  =  ( M `  ( E `  m )
) )
43cbvmptv 4750 . . . 4  |-  ( n  e.  Z  |->  ( M `
 ( E `  n ) ) )  =  ( m  e.  Z  |->  ( M `  ( E `  m ) ) )
51, 4eqtri 2644 . . 3  |-  S  =  ( m  e.  Z  |->  ( M `  ( E `  m )
) )
65a1i 11 . 2  |-  ( ph  ->  S  =  ( m  e.  Z  |->  ( M `
 ( E `  m ) ) ) )
7 meaiuninc.m . . 3  |-  ( ph  ->  M  e. Meas )
8 meaiuninc.n . . 3  |-  ( ph  ->  N  e.  ZZ )
9 meaiuninc.z . . 3  |-  Z  =  ( ZZ>= `  N )
10 meaiuninc.e . . 3  |-  ( ph  ->  E : Z --> dom  M
)
11 meaiuninc.i . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( E `  n )  C_  ( E `  (
n  +  1 ) ) )
12 meaiuninc.x . . 3  |-  ( ph  ->  E. x  e.  RR  A. n  e.  Z  ( M `  ( E `
 n ) )  <_  x )
135, 1eqtr3i 2646 . . 3  |-  ( m  e.  Z  |->  ( M `
 ( E `  m ) ) )  =  ( n  e.  Z  |->  ( M `  ( E `  n ) ) )
14 fveq2 6191 . . . . . . 7  |-  ( k  =  i  ->  ( E `  k )  =  ( E `  i ) )
1514cbviunv 4559 . . . . . 6  |-  U_ k  e.  ( N..^ m ) ( E `  k
)  =  U_ i  e.  ( N..^ m ) ( E `  i
)
1615difeq2i 3725 . . . . 5  |-  ( ( E `  m ) 
\  U_ k  e.  ( N..^ m ) ( E `  k ) )  =  ( ( E `  m ) 
\  U_ i  e.  ( N..^ m ) ( E `  i ) )
1716mpteq2i 4741 . . . 4  |-  ( m  e.  Z  |->  ( ( E `  m ) 
\  U_ k  e.  ( N..^ m ) ( E `  k ) ) )  =  ( m  e.  Z  |->  ( ( E `  m
)  \  U_ i  e.  ( N..^ m ) ( E `  i
) ) )
18 fveq2 6191 . . . . . 6  |-  ( m  =  n  ->  ( E `  m )  =  ( E `  n ) )
19 oveq2 6658 . . . . . . 7  |-  ( m  =  n  ->  ( N..^ m )  =  ( N..^ n ) )
2019iuneq1d 4545 . . . . . 6  |-  ( m  =  n  ->  U_ i  e.  ( N..^ m ) ( E `  i
)  =  U_ i  e.  ( N..^ n ) ( E `  i
) )
2118, 20difeq12d 3729 . . . . 5  |-  ( m  =  n  ->  (
( E `  m
)  \  U_ i  e.  ( N..^ m ) ( E `  i
) )  =  ( ( E `  n
)  \  U_ i  e.  ( N..^ n ) ( E `  i
) ) )
2221cbvmptv 4750 . . . 4  |-  ( m  e.  Z  |->  ( ( E `  m ) 
\  U_ i  e.  ( N..^ m ) ( E `  i ) ) )  =  ( n  e.  Z  |->  ( ( E `  n
)  \  U_ i  e.  ( N..^ n ) ( E `  i
) ) )
2317, 22eqtri 2644 . . 3  |-  ( m  e.  Z  |->  ( ( E `  m ) 
\  U_ k  e.  ( N..^ m ) ( E `  k ) ) )  =  ( n  e.  Z  |->  ( ( E `  n
)  \  U_ i  e.  ( N..^ n ) ( E `  i
) ) )
247, 8, 9, 10, 11, 12, 13, 23meaiuninclem 40697 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( M `  ( E `  m )
) )  ~~>  ( M `
 U_ n  e.  Z  ( E `  n ) ) )
256, 24eqbrtrd 4675 1  |-  ( ph  ->  S  ~~>  ( M `  U_ n  e.  Z  ( E `  n ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465    ~~> cli 14215  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-salg 40529  df-sumge0 40580  df-mea 40667
This theorem is referenced by:  meaiuninc2  40699
  Copyright terms: Public domain W3C validator