MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modadd1 Structured version   Visualization version   Unicode version

Theorem modadd1 12707
Description: Addition property of the modulo operation. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modadd1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) )

Proof of Theorem modadd1
StepHypRef Expression
1 modval 12670 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
2 modval 12670 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
31, 2eqeqan12d 2638 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  D  e.  RR+ )  /\  ( B  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
43anandirs 874 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  D  e.  RR+ )  ->  ( ( A  mod  D )  =  ( B  mod  D
)  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
54adantrl 752 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
6 oveq1 6657 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
75, 6syl6bi 243 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) ) )
8 recn 10026 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
98adantr 481 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  A  e.  CC )
10 recn 10026 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  CC )
1110ad2antrl 764 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  C  e.  CC )
12 rpcn 11841 . . . . . . . . . 10  |-  ( D  e.  RR+  ->  D  e.  CC )
1312adantl 482 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
14 rerpdivcl 11861 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( A  /  D
)  e.  RR )
15 reflcl 12597 . . . . . . . . . . 11  |-  ( ( A  /  D )  e.  RR  ->  ( |_ `  ( A  /  D ) )  e.  RR )
1615recnd 10068 . . . . . . . . . 10  |-  ( ( A  /  D )  e.  RR  ->  ( |_ `  ( A  /  D ) )  e.  CC )
1714, 16syl 17 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  CC )
1813, 17mulcld 10060 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
1918adantrl 752 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
209, 11, 19addsubd 10413 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  +  C ) )
2120adantlr 751 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
) )
22 recn 10026 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
2322adantr 481 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  B  e.  CC )
2410ad2antrl 764 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  C  e.  CC )
2512adantl 482 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  ->  D  e.  CC )
26 rerpdivcl 11861 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( B  /  D
)  e.  RR )
27 reflcl 12597 . . . . . . . . . . 11  |-  ( ( B  /  D )  e.  RR  ->  ( |_ `  ( B  /  D ) )  e.  RR )
2827recnd 10068 . . . . . . . . . 10  |-  ( ( B  /  D )  e.  RR  ->  ( |_ `  ( B  /  D ) )  e.  CC )
2926, 28syl 17 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  CC )
3025, 29mulcld 10060 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3130adantrl 752 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3223, 24, 31addsubd 10413 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
3332adantll 750 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) )
3421, 33eqeq12d 2637 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) ) )
357, 34sylibrd 249 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
36 oveq1 6657 . . . 4  |-  ( ( ( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D ) )
37 readdcl 10019 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
3837adantrr 753 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( A  +  C )  e.  RR )
39 simprr 796 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
4014flcld 12599 . . . . . . . 8  |-  ( ( A  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( A  /  D ) )  e.  ZZ )
4140adantrl 752 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( |_ `  ( A  /  D
) )  e.  ZZ )
42 modcyc2 12706 . . . . . . 7  |-  ( ( ( A  +  C
)  e.  RR  /\  D  e.  RR+  /\  ( |_ `  ( A  /  D ) )  e.  ZZ )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4338, 39, 41, 42syl3anc 1326 . . . . . 6  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4443adantlr 751 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
45 readdcl 10019 . . . . . . . 8  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
4645adantrr 753 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( B  +  C )  e.  RR )
47 simprr 796 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  D  e.  RR+ )
4826flcld 12599 . . . . . . . 8  |-  ( ( B  e.  RR  /\  D  e.  RR+ )  -> 
( |_ `  ( B  /  D ) )  e.  ZZ )
4948adantrl 752 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( |_ `  ( B  /  D
) )  e.  ZZ )
50 modcyc2 12706 . . . . . . 7  |-  ( ( ( B  +  C
)  e.  RR  /\  D  e.  RR+  /\  ( |_ `  ( B  /  D ) )  e.  ZZ )  ->  (
( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
5146, 47, 49, 50syl3anc 1326 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR+ )
)  ->  ( (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
5251adantll 750 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
5344, 52eqeq12d 2637 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D
)  <->  ( ( A  +  C )  mod 
D )  =  ( ( B  +  C
)  mod  D )
) )
5436, 53syl5ib 234 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C
)  mod  D )
) )
5535, 54syld 47 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ ) )  ->  (
( A  mod  D
)  =  ( B  mod  D )  -> 
( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) ) )
56553impia 1261 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   ZZcz 11377   RR+crp 11832   |_cfl 12591    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669
This theorem is referenced by:  modaddabs  12708  modaddmod  12709  modadd12d  12726  modaddmulmod  12737  moddvds  14991  modsubi  15776  lgslem4  25025  lgsvalmod  25041  lgsmod  25048  lgsne0  25060  lgseisen  25104  pellexlem6  37398
  Copyright terms: Public domain W3C validator