MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nglmle Structured version   Visualization version   Unicode version

Theorem nglmle 23100
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007.) (Revised by AV, 16-Oct-2021.)
Hypotheses
Ref Expression
nglmle.1  |-  X  =  ( Base `  G
)
nglmle.2  |-  D  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
nglmle.3  |-  J  =  ( MetOpen `  D )
nglmle.5  |-  N  =  ( norm `  G
)
nglmle.6  |-  ( ph  ->  G  e. NrmGrp )
nglmle.7  |-  ( ph  ->  F : NN --> X )
nglmle.8  |-  ( ph  ->  F ( ~~> t `  J ) P )
nglmle.9  |-  ( ph  ->  R  e.  RR* )
nglmle.10  |-  ( (
ph  /\  k  e.  NN )  ->  ( N `
 ( F `  k ) )  <_  R )
Assertion
Ref Expression
nglmle  |-  ( ph  ->  ( N `  P
)  <_  R )
Distinct variable groups:    k, F    D, k    k, G    k, J    P, k    R, k   
k, X    ph, k
Allowed substitution hint:    N( k)

Proof of Theorem nglmle
StepHypRef Expression
1 nglmle.6 . . . . 5  |-  ( ph  ->  G  e. NrmGrp )
2 ngpgrp 22403 . . . . 5  |-  ( G  e. NrmGrp  ->  G  e.  Grp )
31, 2syl 17 . . . 4  |-  ( ph  ->  G  e.  Grp )
4 ngpms 22404 . . . . . . . . 9  |-  ( G  e. NrmGrp  ->  G  e.  MetSp )
51, 4syl 17 . . . . . . . 8  |-  ( ph  ->  G  e.  MetSp )
6 msxms 22259 . . . . . . . 8  |-  ( G  e.  MetSp  ->  G  e.  *MetSp )
75, 6syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  *MetSp )
8 nglmle.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
9 nglmle.2 . . . . . . . 8  |-  D  =  ( ( dist `  G
)  |`  ( X  X.  X ) )
108, 9xmsxmet 22261 . . . . . . 7  |-  ( G  e.  *MetSp  ->  D  e.  ( *Met `  X ) )
117, 10syl 17 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
12 nglmle.3 . . . . . . 7  |-  J  =  ( MetOpen `  D )
1312mopntopon 22244 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
1411, 13syl 17 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
15 nglmle.8 . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) P )
16 lmcl 21101 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  P  e.  X )
1714, 15, 16syl2anc 693 . . . 4  |-  ( ph  ->  P  e.  X )
18 nglmle.5 . . . . 5  |-  N  =  ( norm `  G
)
19 eqid 2622 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
20 eqid 2622 . . . . 5  |-  ( dist `  G )  =  (
dist `  G )
2118, 8, 19, 20, 9nmval2 22396 . . . 4  |-  ( ( G  e.  Grp  /\  P  e.  X )  ->  ( N `  P
)  =  ( P D ( 0g `  G ) ) )
223, 17, 21syl2anc 693 . . 3  |-  ( ph  ->  ( N `  P
)  =  ( P D ( 0g `  G ) ) )
238, 19grpidcl 17450 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
243, 23syl 17 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  X )
25 xmetsym 22152 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( 0g `  G
)  e.  X )  ->  ( P D ( 0g `  G
) )  =  ( ( 0g `  G
) D P ) )
2611, 17, 24, 25syl3anc 1326 . . 3  |-  ( ph  ->  ( P D ( 0g `  G ) )  =  ( ( 0g `  G ) D P ) )
2722, 26eqtrd 2656 . 2  |-  ( ph  ->  ( N `  P
)  =  ( ( 0g `  G ) D P ) )
28 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
29 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
30 nglmle.9 . . 3  |-  ( ph  ->  R  e.  RR* )
313adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  G  e. 
Grp )
32 nglmle.7 . . . . . . 7  |-  ( ph  ->  F : NN --> X )
3332ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
3418, 8, 19, 20, 9nmval2 22396 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( F `  k )  e.  X )  -> 
( N `  ( F `  k )
)  =  ( ( F `  k ) D ( 0g `  G ) ) )
3531, 33, 34syl2anc 693 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( N `
 ( F `  k ) )  =  ( ( F `  k ) D ( 0g `  G ) ) )
3611adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( *Met `  X ) )
3724adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0g
`  G )  e.  X )
38 xmetsym 22152 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  k )  e.  X  /\  ( 0g `  G
)  e.  X )  ->  ( ( F `
 k ) D ( 0g `  G
) )  =  ( ( 0g `  G
) D ( F `
 k ) ) )
3936, 33, 37, 38syl3anc 1326 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D ( 0g `  G ) )  =  ( ( 0g `  G ) D ( F `  k ) ) )
4035, 39eqtrd 2656 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( N `
 ( F `  k ) )  =  ( ( 0g `  G ) D ( F `  k ) ) )
41 nglmle.10 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( N `
 ( F `  k ) )  <_  R )
4240, 41eqbrtrrd 4677 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 0g `  G ) D ( F `  k ) )  <_  R )
4328, 12, 11, 29, 15, 24, 30, 42lmle 23099 . 2  |-  ( ph  ->  ( ( 0g `  G ) D P )  <_  R )
4427, 43eqbrtrd 4675 1  |-  ( ph  ->  ( N `  P
)  <_  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937   RR*cxr 10073    <_ cle 10075   NNcn 11020   Basecbs 15857   distcds 15950   0gc0g 16100   Grpcgrp 17422   *Metcxmt 19731   MetOpencmopn 19736  TopOnctopon 20715   ~~> tclm 21030   *MetSpcxme 22122   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator