| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmcoplbi | Structured version Visualization version Unicode version | ||
| Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmcopex.1 |
|
| nmcopex.2 |
|
| Ref | Expression |
|---|---|
| nmcoplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le0 11110 |
. . . . 5
| |
| 2 | 1 | a1i 11 |
. . . 4
|
| 3 | fveq2 6191 |
. . . . . . 7
| |
| 4 | nmcopex.1 |
. . . . . . . 8
| |
| 5 | 4 | lnop0i 28829 |
. . . . . . 7
|
| 6 | 3, 5 | syl6eq 2672 |
. . . . . 6
|
| 7 | 6 | fveq2d 6195 |
. . . . 5
|
| 8 | norm0 27985 |
. . . . 5
| |
| 9 | 7, 8 | syl6eq 2672 |
. . . 4
|
| 10 | fveq2 6191 |
. . . . . . 7
| |
| 11 | 10, 8 | syl6eq 2672 |
. . . . . 6
|
| 12 | 11 | oveq2d 6666 |
. . . . 5
|
| 13 | nmcopex.2 |
. . . . . . . 8
| |
| 14 | 4, 13 | nmcopexi 28886 |
. . . . . . 7
|
| 15 | 14 | recni 10052 |
. . . . . 6
|
| 16 | 15 | mul01i 10226 |
. . . . 5
|
| 17 | 12, 16 | syl6eq 2672 |
. . . 4
|
| 18 | 2, 9, 17 | 3brtr4d 4685 |
. . 3
|
| 19 | 18 | adantl 482 |
. 2
|
| 20 | normcl 27982 |
. . . . . . . . 9
| |
| 21 | 20 | adantr 481 |
. . . . . . . 8
|
| 22 | normne0 27987 |
. . . . . . . . 9
| |
| 23 | 22 | biimpar 502 |
. . . . . . . 8
|
| 24 | 21, 23 | rereccld 10852 |
. . . . . . 7
|
| 25 | normgt0 27984 |
. . . . . . . . . 10
| |
| 26 | 25 | biimpa 501 |
. . . . . . . . 9
|
| 27 | 21, 26 | recgt0d 10958 |
. . . . . . . 8
|
| 28 | 0re 10040 |
. . . . . . . . 9
| |
| 29 | ltle 10126 |
. . . . . . . . 9
| |
| 30 | 28, 29 | mpan 706 |
. . . . . . . 8
|
| 31 | 24, 27, 30 | sylc 65 |
. . . . . . 7
|
| 32 | 24, 31 | absidd 14161 |
. . . . . 6
|
| 33 | 32 | oveq1d 6665 |
. . . . 5
|
| 34 | 24 | recnd 10068 |
. . . . . . . 8
|
| 35 | simpl 473 |
. . . . . . . 8
| |
| 36 | 4 | lnopmuli 28831 |
. . . . . . . 8
|
| 37 | 34, 35, 36 | syl2anc 693 |
. . . . . . 7
|
| 38 | 37 | fveq2d 6195 |
. . . . . 6
|
| 39 | 4 | lnopfi 28828 |
. . . . . . . . 9
|
| 40 | 39 | ffvelrni 6358 |
. . . . . . . 8
|
| 41 | 40 | adantr 481 |
. . . . . . 7
|
| 42 | norm-iii 27997 |
. . . . . . 7
| |
| 43 | 34, 41, 42 | syl2anc 693 |
. . . . . 6
|
| 44 | 38, 43 | eqtrd 2656 |
. . . . 5
|
| 45 | normcl 27982 |
. . . . . . . . 9
| |
| 46 | 40, 45 | syl 17 |
. . . . . . . 8
|
| 47 | 46 | adantr 481 |
. . . . . . 7
|
| 48 | 47 | recnd 10068 |
. . . . . 6
|
| 49 | 21 | recnd 10068 |
. . . . . 6
|
| 50 | 48, 49, 23 | divrec2d 10805 |
. . . . 5
|
| 51 | 33, 44, 50 | 3eqtr4rd 2667 |
. . . 4
|
| 52 | hvmulcl 27870 |
. . . . . 6
| |
| 53 | 34, 35, 52 | syl2anc 693 |
. . . . 5
|
| 54 | normcl 27982 |
. . . . . . 7
| |
| 55 | 53, 54 | syl 17 |
. . . . . 6
|
| 56 | norm1 28106 |
. . . . . 6
| |
| 57 | eqle 10139 |
. . . . . 6
| |
| 58 | 55, 56, 57 | syl2anc 693 |
. . . . 5
|
| 59 | nmoplb 28766 |
. . . . . 6
| |
| 60 | 39, 59 | mp3an1 1411 |
. . . . 5
|
| 61 | 53, 58, 60 | syl2anc 693 |
. . . 4
|
| 62 | 51, 61 | eqbrtrd 4675 |
. . 3
|
| 63 | 14 | a1i 11 |
. . . 4
|
| 64 | ledivmul2 10902 |
. . . 4
| |
| 65 | 47, 63, 21, 26, 64 | syl112anc 1330 |
. . 3
|
| 66 | 62, 65 | mpbid 222 |
. 2
|
| 67 | 19, 66 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-grpo 27347 df-gid 27348 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-hnorm 27825 df-hba 27826 df-hvsub 27828 df-nmop 28698 df-cnop 28699 df-lnop 28700 |
| This theorem is referenced by: nmcoplb 28889 cnlnadjlem2 28927 cnlnadjlem7 28932 |
| Copyright terms: Public domain | W3C validator |