MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgtail Structured version   Visualization version   Unicode version

Theorem ntrivcvgtail 14632
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgtail.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgtail.2  |-  ( ph  ->  N  e.  Z )
ntrivcvgtail.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgtail.4  |-  ( ph  ->  X  =/=  0 )
ntrivcvgtail.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
ntrivcvgtail  |-  ( ph  ->  ( (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\  seq N
(  x.  ,  F
)  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) )
Distinct variable groups:    k, F    ph, k    k, M    k, N    k, Z
Allowed substitution hint:    X( k)

Proof of Theorem ntrivcvgtail
StepHypRef Expression
1 fclim 14284 . . . . . . . 8  |-  ~~>  : dom  ~~>  --> CC
2 ffun 6048 . . . . . . . 8  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
31, 2ax-mp 5 . . . . . . 7  |-  Fun  ~~>
4 ntrivcvgtail.3 . . . . . . 7  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
5 funbrfv 6234 . . . . . . 7  |-  ( Fun  ~~>  ->  (  seq M (  x.  ,  F )  ~~>  X  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X ) )
63, 4, 5mpsyl 68 . . . . . 6  |-  ( ph  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X )
7 ntrivcvgtail.4 . . . . . 6  |-  ( ph  ->  X  =/=  0 )
86, 7eqnetrd 2861 . . . . 5  |-  ( ph  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =/=  0 )
94, 6breqtrrd 4681 . . . . 5  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  ~~>  `  seq M (  x.  ,  F ) ) )
108, 9jca 554 . . . 4  |-  ( ph  ->  ( (  ~~>  `  seq M (  x.  ,  F ) )  =/=  0  /\  seq M
(  x.  ,  F
)  ~~>  (  ~~>  `  seq M (  x.  ,  F ) ) ) )
1110adantr 481 . . 3  |-  ( (
ph  /\  N  =  M )  ->  (
(  ~~>  `  seq M (  x.  ,  F ) )  =/=  0  /\ 
seq M (  x.  ,  F )  ~~>  (  ~~>  `  seq M (  x.  ,  F ) ) ) )
12 seqeq1 12804 . . . . . . 7  |-  ( N  =  M  ->  seq N (  x.  ,  F )  =  seq M (  x.  ,  F ) )
1312fveq2d 6195 . . . . . 6  |-  ( N  =  M  ->  (  ~~>  ` 
seq N (  x.  ,  F ) )  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
1413neeq1d 2853 . . . . 5  |-  ( N  =  M  ->  (
(  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  <->  (  ~~>  ` 
seq M (  x.  ,  F ) )  =/=  0 ) )
1512, 13breq12d 4666 . . . . 5  |-  ( N  =  M  ->  (  seq N (  x.  ,  F )  ~~>  (  ~~>  `  seq N (  x.  ,  F ) )  <->  seq M (  x.  ,  F )  ~~>  (  ~~>  `  seq M (  x.  ,  F ) ) ) )
1614, 15anbi12d 747 . . . 4  |-  ( N  =  M  ->  (
( (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\  seq N
(  x.  ,  F
)  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) )  <-> 
( (  ~~>  `  seq M (  x.  ,  F ) )  =/=  0  /\  seq M
(  x.  ,  F
)  ~~>  (  ~~>  `  seq M (  x.  ,  F ) ) ) ) )
1716adantl 482 . . 3  |-  ( (
ph  /\  N  =  M )  ->  (
( (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\  seq N
(  x.  ,  F
)  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) )  <-> 
( (  ~~>  `  seq M (  x.  ,  F ) )  =/=  0  /\  seq M
(  x.  ,  F
)  ~~>  (  ~~>  `  seq M (  x.  ,  F ) ) ) ) )
1811, 17mpbird 247 . 2  |-  ( (
ph  /\  N  =  M )  ->  (
(  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\ 
seq N (  x.  ,  F )  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) )
19 ntrivcvgtail.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
20 simpr 477 . . . . . . 7  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
2120, 19syl6eleqr 2712 . . . . . 6  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( N  -  1 )  e.  Z )
22 ntrivcvgtail.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
2322adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M
) )  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
244adantr 481 . . . . . 6  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  seq M (  x.  ,  F )  ~~>  X )
257adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  X  =/=  0 )
2619, 21, 24, 25, 23ntrivcvgfvn0 14631 . . . . . 6  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F ) `  ( N  -  1 ) )  =/=  0 )
2719, 21, 23, 24, 26clim2div 14621 . . . . 5  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  seq (
( N  -  1 )  +  1 ) (  x.  ,  F
)  ~~>  ( X  / 
(  seq M (  x.  ,  F ) `  ( N  -  1
) ) ) )
28 funbrfv 6234 . . . . 5  |-  ( Fun  ~~>  ->  (  seq ( ( N  -  1 )  +  1 ) (  x.  ,  F )  ~~>  ( X  /  (  seq M (  x.  ,  F ) `  ( N  -  1 ) ) )  ->  (  ~~>  ` 
seq ( ( N  -  1 )  +  1 ) (  x.  ,  F ) )  =  ( X  / 
(  seq M (  x.  ,  F ) `  ( N  -  1
) ) ) ) )
293, 27, 28mpsyl 68 . . . 4  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  ~~>  `  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F ) )  =  ( X  /  (  seq M (  x.  ,  F ) `  ( N  -  1 ) ) ) )
30 climcl 14230 . . . . . . 7  |-  (  seq M (  x.  ,  F )  ~~>  X  ->  X  e.  CC )
314, 30syl 17 . . . . . 6  |-  ( ph  ->  X  e.  CC )
3231adantr 481 . . . . 5  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  X  e.  CC )
33 ntrivcvgtail.2 . . . . . . . . 9  |-  ( ph  ->  N  e.  Z )
34 eluzel2 11692 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
3534, 19eleq2s 2719 . . . . . . . . 9  |-  ( N  e.  Z  ->  M  e.  ZZ )
3633, 35syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
3719, 36, 22prodf 14619 . . . . . . 7  |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
3819feq2i 6037 . . . . . . 7  |-  (  seq M (  x.  ,  F ) : Z --> CC 
<->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
3937, 38sylib 208 . . . . . 6  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
4039ffvelrnda 6359 . . . . 5  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  seq M (  x.  ,  F ) `  ( N  -  1 ) )  e.  CC )
4132, 40, 25, 26divne0d 10817 . . . 4  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( X  /  (  seq M (  x.  ,  F ) `
 ( N  - 
1 ) ) )  =/=  0 )
4229, 41eqnetrd 2861 . . 3  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  ~~>  `  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F ) )  =/=  0 )
4327, 29breqtrrd 4681 . . 3  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  seq (
( N  -  1 )  +  1 ) (  x.  ,  F
)  ~~>  (  ~~>  `  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F ) ) )
44 uzssz 11707 . . . . . . . . . . . 12  |-  ( ZZ>= `  M )  C_  ZZ
4519, 44eqsstri 3635 . . . . . . . . . . 11  |-  Z  C_  ZZ
4645, 33sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
4746zcnd 11483 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
4847adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
49 1cnd 10056 . . . . . . . 8  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  1  e.  CC )
5048, 49npcand 10396 . . . . . . 7  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( ( N  -  1 )  +  1 )  =  N )
5150seqeq1d 12807 . . . . . 6  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  seq (
( N  -  1 )  +  1 ) (  x.  ,  F
)  =  seq N
(  x.  ,  F
) )
5251fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  ~~>  `  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F ) )  =  (  ~~>  `  seq N (  x.  ,  F ) ) )
5352neeq1d 2853 . . . 4  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( (  ~~>  ` 
seq ( ( N  -  1 )  +  1 ) (  x.  ,  F ) )  =/=  0  <->  (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0 ) )
5451, 52breq12d 4666 . . . 4  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  (  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F )  ~~>  (  ~~>  `  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F ) )  <->  seq N (  x.  ,  F )  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) )
5553, 54anbi12d 747 . . 3  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( (
(  ~~>  `  seq (
( N  -  1 )  +  1 ) (  x.  ,  F
) )  =/=  0  /\  seq ( ( N  -  1 )  +  1 ) (  x.  ,  F )  ~~>  (  ~~>  `  seq ( ( N  - 
1 )  +  1 ) (  x.  ,  F ) ) )  <-> 
( (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\  seq N
(  x.  ,  F
)  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) ) )
5642, 43, 55mpbi2and 956 . 2  |-  ( (
ph  /\  ( N  -  1 )  e.  ( ZZ>= `  M )
)  ->  ( (  ~~>  ` 
seq N (  x.  ,  F ) )  =/=  0  /\  seq N (  x.  ,  F )  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) )
5733, 19syl6eleq 2711 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
58 uzm1 11718 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  ( N  -  1 )  e.  ( ZZ>= `  M
) ) )
5957, 58syl 17 . 2  |-  ( ph  ->  ( N  =  M  \/  ( N  - 
1 )  e.  (
ZZ>= `  M ) ) )
6018, 56, 59mpjaodan 827 1  |-  ( ph  ->  ( (  ~~>  `  seq N (  x.  ,  F ) )  =/=  0  /\  seq N
(  x.  ,  F
)  ~~>  (  ~~>  `  seq N (  x.  ,  F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  ntrivcvgmullem  14633
  Copyright terms: Public domain W3C validator