MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgmullem Structured version   Visualization version   Unicode version

Theorem ntrivcvgmullem 14633
Description: Lemma for ntrivcvgmul 14634. (Contributed by Scott Fenton, 19-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgmullem.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgmullem.2  |-  ( ph  ->  N  e.  Z )
ntrivcvgmullem.3  |-  ( ph  ->  P  e.  Z )
ntrivcvgmullem.4  |-  ( ph  ->  X  =/=  0 )
ntrivcvgmullem.5  |-  ( ph  ->  Y  =/=  0 )
ntrivcvgmullem.6  |-  ( ph  ->  seq N (  x.  ,  F )  ~~>  X )
ntrivcvgmullem.7  |-  ( ph  ->  seq P (  x.  ,  G )  ~~>  Y )
ntrivcvgmullem.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
ntrivcvgmullem.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
ntrivcvgmullem.a  |-  ( ph  ->  N  <_  P )
ntrivcvgmullem.b  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  x.  ( G `  k
) ) )
Assertion
Ref Expression
ntrivcvgmullem  |-  ( ph  ->  E. q  e.  Z  E. w ( w  =/=  0  /\  seq q
(  x.  ,  H
)  ~~>  w ) )
Distinct variable groups:    w, F    H, q, w    P, q, w    w, Y    Z, q    k, F    k, G    k, H    ph, k    P, k   
k, Z    k, N
Allowed substitution hints:    ph( w, q)    F( q)    G( w, q)    M( w, k, q)    N( w, q)    X( w, k, q)    Y( k, q)    Z( w)

Proof of Theorem ntrivcvgmullem
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 ntrivcvgmullem.3 . 2  |-  ( ph  ->  P  e.  Z )
2 eqid 2622 . . . . . . 7  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
3 ntrivcvgmullem.a . . . . . . . 8  |-  ( ph  ->  N  <_  P )
4 ntrivcvgmullem.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
5 uzssz 11707 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
64, 5eqsstri 3635 . . . . . . . . . 10  |-  Z  C_  ZZ
7 ntrivcvgmullem.2 . . . . . . . . . 10  |-  ( ph  ->  N  e.  Z )
86, 7sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
96, 1sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
10 eluz 11701 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  ( P  e.  (
ZZ>= `  N )  <->  N  <_  P ) )
118, 9, 10syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( P  e.  (
ZZ>= `  N )  <->  N  <_  P ) )
123, 11mpbird 247 . . . . . . 7  |-  ( ph  ->  P  e.  ( ZZ>= `  N ) )
13 ntrivcvgmullem.6 . . . . . . 7  |-  ( ph  ->  seq N (  x.  ,  F )  ~~>  X )
14 ntrivcvgmullem.4 . . . . . . 7  |-  ( ph  ->  X  =/=  0 )
154uztrn2 11705 . . . . . . . . 9  |-  ( ( N  e.  Z  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  Z )
167, 15sylan 488 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  Z )
17 ntrivcvgmullem.8 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1816, 17syldan 487 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  e.  CC )
192, 12, 13, 14, 18ntrivcvgtail 14632 . . . . . 6  |-  ( ph  ->  ( (  ~~>  `  seq P (  x.  ,  F ) )  =/=  0  /\  seq P
(  x.  ,  F
)  ~~>  (  ~~>  `  seq P (  x.  ,  F ) ) ) )
2019simprd 479 . . . . 5  |-  ( ph  ->  seq P (  x.  ,  F )  ~~>  (  ~~>  `  seq P (  x.  ,  F ) ) )
21 climcl 14230 . . . . 5  |-  (  seq P (  x.  ,  F )  ~~>  (  ~~>  `  seq P (  x.  ,  F ) )  -> 
(  ~~>  `  seq P (  x.  ,  F ) )  e.  CC )
2220, 21syl 17 . . . 4  |-  ( ph  ->  (  ~~>  `  seq P (  x.  ,  F ) )  e.  CC )
23 ntrivcvgmullem.7 . . . . 5  |-  ( ph  ->  seq P (  x.  ,  G )  ~~>  Y )
24 climcl 14230 . . . . 5  |-  (  seq P (  x.  ,  G )  ~~>  Y  ->  Y  e.  CC )
2523, 24syl 17 . . . 4  |-  ( ph  ->  Y  e.  CC )
2619simpld 475 . . . 4  |-  ( ph  ->  (  ~~>  `  seq P (  x.  ,  F ) )  =/=  0 )
27 ntrivcvgmullem.5 . . . 4  |-  ( ph  ->  Y  =/=  0 )
2822, 25, 26, 27mulne0d 10679 . . 3  |-  ( ph  ->  ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  =/=  0
)
29 eqid 2622 . . . 4  |-  ( ZZ>= `  P )  =  (
ZZ>= `  P )
30 seqex 12803 . . . . 5  |-  seq P
(  x.  ,  H
)  e.  _V
3130a1i 11 . . . 4  |-  ( ph  ->  seq P (  x.  ,  H )  e. 
_V )
324uztrn2 11705 . . . . . . . 8  |-  ( ( P  e.  Z  /\  k  e.  ( ZZ>= `  P ) )  -> 
k  e.  Z )
331, 32sylan 488 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  P )
)  ->  k  e.  Z )
3433, 17syldan 487 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  P )
)  ->  ( F `  k )  e.  CC )
3529, 9, 34prodf 14619 . . . . 5  |-  ( ph  ->  seq P (  x.  ,  F ) : ( ZZ>= `  P ) --> CC )
3635ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  P )
)  ->  (  seq P (  x.  ,  F ) `  j
)  e.  CC )
37 ntrivcvgmullem.9 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
3833, 37syldan 487 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  P )
)  ->  ( G `  k )  e.  CC )
3929, 9, 38prodf 14619 . . . . 5  |-  ( ph  ->  seq P (  x.  ,  G ) : ( ZZ>= `  P ) --> CC )
4039ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  P )
)  ->  (  seq P (  x.  ,  G ) `  j
)  e.  CC )
41 simpr 477 . . . . 5  |-  ( (
ph  /\  j  e.  ( ZZ>= `  P )
)  ->  j  e.  ( ZZ>= `  P )
)
42 simpll 790 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  P )
)  /\  k  e.  ( P ... j ) )  ->  ph )
431adantr 481 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( ZZ>= `  P )
)  ->  P  e.  Z )
44 elfzuz 12338 . . . . . . 7  |-  ( k  e.  ( P ... j )  ->  k  e.  ( ZZ>= `  P )
)
4543, 44, 32syl2an 494 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  P )
)  /\  k  e.  ( P ... j ) )  ->  k  e.  Z )
4642, 45, 17syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  P )
)  /\  k  e.  ( P ... j ) )  ->  ( F `  k )  e.  CC )
4742, 45, 37syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  P )
)  /\  k  e.  ( P ... j ) )  ->  ( G `  k )  e.  CC )
48 ntrivcvgmullem.b . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `
 k )  x.  ( G `  k
) ) )
4942, 45, 48syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  P )
)  /\  k  e.  ( P ... j ) )  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( G `
 k ) ) )
5041, 46, 47, 49prodfmul 14622 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  P )
)  ->  (  seq P (  x.  ,  H ) `  j
)  =  ( (  seq P (  x.  ,  F ) `  j )  x.  (  seq P (  x.  ,  G ) `  j
) ) )
5129, 9, 20, 31, 23, 36, 40, 50climmul 14363 . . 3  |-  ( ph  ->  seq P (  x.  ,  H )  ~~>  ( (  ~~>  `
 seq P (  x.  ,  F ) )  x.  Y ) )
52 ovex 6678 . . . 4  |-  ( (  ~~>  `
 seq P (  x.  ,  F ) )  x.  Y )  e. 
_V
53 neeq1 2856 . . . . 5  |-  ( w  =  ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  ->  (
w  =/=  0  <->  (
(  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  =/=  0 ) )
54 breq2 4657 . . . . 5  |-  ( w  =  ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  ->  (  seq P (  x.  ,  H )  ~~>  w  <->  seq P (  x.  ,  H )  ~~>  ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y ) ) )
5553, 54anbi12d 747 . . . 4  |-  ( w  =  ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  ->  (
( w  =/=  0  /\  seq P (  x.  ,  H )  ~~>  w )  <-> 
( ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  =/=  0  /\  seq P (  x.  ,  H )  ~~>  ( (  ~~>  `
 seq P (  x.  ,  F ) )  x.  Y ) ) ) )
5652, 55spcev 3300 . . 3  |-  ( ( ( (  ~~>  `  seq P (  x.  ,  F ) )  x.  Y )  =/=  0  /\  seq P (  x.  ,  H )  ~~>  ( (  ~~>  `
 seq P (  x.  ,  F ) )  x.  Y ) )  ->  E. w ( w  =/=  0  /\  seq P (  x.  ,  H )  ~~>  w ) )
5728, 51, 56syl2anc 693 . 2  |-  ( ph  ->  E. w ( w  =/=  0  /\  seq P (  x.  ,  H )  ~~>  w ) )
58 seqeq1 12804 . . . . . 6  |-  ( q  =  P  ->  seq q (  x.  ,  H )  =  seq P (  x.  ,  H ) )
5958breq1d 4663 . . . . 5  |-  ( q  =  P  ->  (  seq q (  x.  ,  H )  ~~>  w  <->  seq P (  x.  ,  H )  ~~>  w ) )
6059anbi2d 740 . . . 4  |-  ( q  =  P  ->  (
( w  =/=  0  /\  seq q (  x.  ,  H )  ~~>  w )  <-> 
( w  =/=  0  /\  seq P (  x.  ,  H )  ~~>  w ) ) )
6160exbidv 1850 . . 3  |-  ( q  =  P  ->  ( E. w ( w  =/=  0  /\  seq q
(  x.  ,  H
)  ~~>  w )  <->  E. w
( w  =/=  0  /\  seq P (  x.  ,  H )  ~~>  w ) ) )
6261rspcev 3309 . 2  |-  ( ( P  e.  Z  /\  E. w ( w  =/=  0  /\  seq P
(  x.  ,  H
)  ~~>  w ) )  ->  E. q  e.  Z  E. w ( w  =/=  0  /\  seq q
(  x.  ,  H
)  ~~>  w ) )
631, 57, 62syl2anc 693 1  |-  ( ph  ->  E. q  e.  Z  E. w ( w  =/=  0  /\  seq q
(  x.  ,  H
)  ~~>  w ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  ntrivcvgmul  14634
  Copyright terms: Public domain W3C validator