| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1resb | Structured version Visualization version Unicode version | ||
| Description: The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| Ref | Expression |
|---|---|
| rlimresb.1 |
|
| rlimresb.2 |
|
| rlimresb.3 |
|
| Ref | Expression |
|---|---|
| o1resb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1res 14291 |
. 2
| |
| 2 | rlimresb.1 |
. . . . . . 7
| |
| 3 | 2 | feqmptd 6249 |
. . . . . 6
|
| 4 | 3 | reseq1d 5395 |
. . . . 5
|
| 5 | resmpt3 5450 |
. . . . 5
| |
| 6 | 4, 5 | syl6eq 2672 |
. . . 4
|
| 7 | 6 | eleq1d 2686 |
. . 3
|
| 8 | inss1 3833 |
. . . . . 6
| |
| 9 | rlimresb.2 |
. . . . . 6
| |
| 10 | 8, 9 | syl5ss 3614 |
. . . . 5
|
| 11 | 8 | sseli 3599 |
. . . . . 6
|
| 12 | ffvelrn 6357 |
. . . . . 6
| |
| 13 | 2, 11, 12 | syl2an 494 |
. . . . 5
|
| 14 | 10, 13 | elo1mpt 14265 |
. . . 4
|
| 15 | elin 3796 |
. . . . . . . . . 10
| |
| 16 | 15 | imbi1i 339 |
. . . . . . . . 9
|
| 17 | impexp 462 |
. . . . . . . . 9
| |
| 18 | 16, 17 | bitri 264 |
. . . . . . . 8
|
| 19 | impexp 462 |
. . . . . . . . . 10
| |
| 20 | rlimresb.3 |
. . . . . . . . . . . . . . 15
| |
| 21 | 20 | ad2antrr 762 |
. . . . . . . . . . . . . 14
|
| 22 | 9 | adantr 481 |
. . . . . . . . . . . . . . 15
|
| 23 | 22 | sselda 3603 |
. . . . . . . . . . . . . 14
|
| 24 | elicopnf 12269 |
. . . . . . . . . . . . . . 15
| |
| 25 | 24 | baibd 948 |
. . . . . . . . . . . . . 14
|
| 26 | 21, 23, 25 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 27 | 26 | anbi1d 741 |
. . . . . . . . . . . 12
|
| 28 | simplrl 800 |
. . . . . . . . . . . . 13
| |
| 29 | maxle 12022 |
. . . . . . . . . . . . 13
| |
| 30 | 21, 28, 23, 29 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 31 | 27, 30 | bitr4d 271 |
. . . . . . . . . . 11
|
| 32 | 31 | imbi1d 331 |
. . . . . . . . . 10
|
| 33 | 19, 32 | syl5bbr 274 |
. . . . . . . . 9
|
| 34 | 33 | pm5.74da 723 |
. . . . . . . 8
|
| 35 | 18, 34 | syl5bb 272 |
. . . . . . 7
|
| 36 | 35 | ralbidv2 2984 |
. . . . . 6
|
| 37 | 2 | adantr 481 |
. . . . . . 7
|
| 38 | simprl 794 |
. . . . . . . 8
| |
| 39 | 20 | adantr 481 |
. . . . . . . 8
|
| 40 | 38, 39 | ifcld 4131 |
. . . . . . 7
|
| 41 | simprr 796 |
. . . . . . 7
| |
| 42 | elo12r 14259 |
. . . . . . . 8
| |
| 43 | 42 | 3expia 1267 |
. . . . . . 7
|
| 44 | 37, 22, 40, 41, 43 | syl22anc 1327 |
. . . . . 6
|
| 45 | 36, 44 | sylbid 230 |
. . . . 5
|
| 46 | 45 | rexlimdvva 3038 |
. . . 4
|
| 47 | 14, 46 | sylbid 230 |
. . 3
|
| 48 | 7, 47 | sylbid 230 |
. 2
|
| 49 | 1, 48 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ico 12181 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-o1 14221 df-lo1 14222 |
| This theorem is referenced by: chpo1ub 25169 dchrisum0lem2a 25206 pntrsumo1 25254 |
| Copyright terms: Public domain | W3C validator |