MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmod Structured version   Visualization version   Unicode version

Theorem odmod 17965
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
odmod  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )

Proof of Theorem odmod
StepHypRef Expression
1 simpl3 1066 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  N  e.  ZZ )
21zred 11482 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  N  e.  RR )
3 simpr 477 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( O `  A )  e.  NN )
43nnrpd 11870 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( O `  A )  e.  RR+ )
5 modval 12670 . . . 4  |-  ( ( N  e.  RR  /\  ( O `  A )  e.  RR+ )  ->  ( N  mod  ( O `  A ) )  =  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) )
62, 4, 5syl2anc 693 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( N  mod  ( O `  A ) )  =  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )
76oveq1d 6665 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  .x.  A )  =  ( ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) )  .x.  A ) )
8 simpl1 1064 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  G  e.  Grp )
93nnzd 11481 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( O `  A )  e.  ZZ )
102, 3nndivred 11069 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( N  / 
( O `  A
) )  e.  RR )
1110flcld 12599 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( |_ `  ( N  /  ( O `  A )
) )  e.  ZZ )
129, 11zmulcld 11488 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  e.  ZZ )
13 simpl2 1065 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  A  e.  X
)
14 odcl.1 . . . 4  |-  X  =  ( Base `  G
)
15 odid.3 . . . 4  |-  .x.  =  (.g
`  G )
16 eqid 2622 . . . 4  |-  ( -g `  G )  =  (
-g `  G )
1714, 15, 16mulgsubdir 17582 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  ZZ  /\  A  e.  X ) )  -> 
( ( N  -  ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) )  .x.  A )  =  ( ( N 
.x.  A ) (
-g `  G )
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A ) ) )
188, 1, 12, 13, 17syl13anc 1328 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) )  .x.  A
)  =  ( ( N  .x.  A ) ( -g `  G
) ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  .x.  A ) ) )
19 nncn 11028 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  CC )
20 zcn 11382 . . . . . . . 8  |-  ( ( |_ `  ( N  /  ( O `  A ) ) )  e.  ZZ  ->  ( |_ `  ( N  / 
( O `  A
) ) )  e.  CC )
21 mulcom 10022 . . . . . . . 8  |-  ( ( ( O `  A
)  e.  CC  /\  ( |_ `  ( N  /  ( O `  A ) ) )  e.  CC )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  =  ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) ) )
2219, 20, 21syl2an 494 . . . . . . 7  |-  ( ( ( O `  A
)  e.  NN  /\  ( |_ `  ( N  /  ( O `  A ) ) )  e.  ZZ )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  =  ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) ) )
233, 11, 22syl2anc 693 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  =  ( ( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) ) )
2423oveq1d 6665 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  .x.  A )  =  ( ( ( |_ `  ( N  /  ( O `  A )
) )  x.  ( O `  A )
)  .x.  A )
)
2514, 15mulgass 17579 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( |_ `  ( N  /  ( O `  A )
) )  e.  ZZ  /\  ( O `  A
)  e.  ZZ  /\  A  e.  X )
)  ->  ( (
( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A )  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
268, 11, 9, 13, 25syl13anc 1328 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( ( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A )  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
27 odcl.2 . . . . . . . . 9  |-  O  =  ( od `  G
)
28 odid.4 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
2914, 27, 15, 28odid 17957 . . . . . . . 8  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  .0.  )
3013, 29syl 17 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( O `
 A )  .x.  A )  =  .0.  )
3130oveq2d 6666 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( |_
`  ( N  / 
( O `  A
) ) )  .x.  ( ( O `  A )  .x.  A
) )  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  .0.  ) )
3214, 15, 28mulgz 17568 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( |_ `  ( N  /  ( O `  A ) ) )  e.  ZZ )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
338, 11, 32syl2anc 693 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( |_
`  ( N  / 
( O `  A
) ) )  .x.  .0.  )  =  .0.  )
3431, 33eqtrd 2656 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( |_
`  ( N  / 
( O `  A
) ) )  .x.  ( ( O `  A )  .x.  A
) )  =  .0.  )
3524, 26, 343eqtrd 2660 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  .x.  A )  =  .0.  )
3635oveq2d 6666 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N 
.x.  A ) (
-g `  G )
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A ) )  =  ( ( N  .x.  A ) ( -g `  G
)  .0.  ) )
3714, 15mulgcl 17559 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  A  e.  X )  ->  ( N  .x.  A )  e.  X )
388, 1, 13, 37syl3anc 1326 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( N  .x.  A )  e.  X
)
3914, 28, 16grpsubid1 17500 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  .x.  A )  e.  X )  -> 
( ( N  .x.  A ) ( -g `  G )  .0.  )  =  ( N  .x.  A ) )
408, 38, 39syl2anc 693 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N 
.x.  A ) (
-g `  G )  .0.  )  =  ( N  .x.  A ) )
4136, 40eqtrd 2656 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N 
.x.  A ) (
-g `  G )
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A ) )  =  ( N 
.x.  A ) )
427, 18, 413eqtrd 2660 1  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   RR+crp 11832   |_cfl 12591    mod cmo 12668   Basecbs 15857   0gc0g 16100   Grpcgrp 17422   -gcsg 17424  .gcmg 17540   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-od 17948
This theorem is referenced by:  oddvds  17966  odf1o2  17988
  Copyright terms: Public domain W3C validator