Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem12 Structured version   Visualization version   Unicode version

Theorem poimirlem12 33421
Description: Lemma for poimir 33442 connecting walks that could yield from a given cube a given face opposite the final vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem12.2  |-  ( ph  ->  T  e.  S )
poimirlem12.3  |-  ( ph  ->  ( 2nd `  T
)  =  N )
poimirlem12.4  |-  ( ph  ->  U  e.  S )
poimirlem12.5  |-  ( ph  ->  ( 2nd `  U
)  =  N )
poimirlem12.6  |-  ( ph  ->  M  e.  ( 0 ... ( N  - 
1 ) ) )
Assertion
Ref Expression
poimirlem12  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )
Distinct variable groups:    f, j,
t, y    ph, j, y   
j, F, y    j, M, y    j, N, y    T, j, y    U, j, y    ph, t    f, K, j, t    f, M, t    f, N, t    T, f    U, f    f, F, t    t, T    t, U    S, j, t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem12
StepHypRef Expression
1 eldif 3584 . . . . . . 7  |-  ( y  e.  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  \  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )  <-> 
( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
2 imassrn 5477 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  C_  ran  ( 2nd `  ( 1st `  T ) )
3 poimirlem12.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  T  e.  S )
4 elrabi 3359 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
5 poimirlem22.s . . . . . . . . . . . . . . . . 17  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
64, 5eleq2s 2719 . . . . . . . . . . . . . . . 16  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
7 xp1st 7198 . . . . . . . . . . . . . . . 16  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
83, 6, 73syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
9 xp2nd 7199 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
108, 9syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
11 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
12 f1oeq1 6127 . . . . . . . . . . . . . . 15  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
1311, 12elab 3350 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
1410, 13sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
15 f1of 6137 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) --> ( 1 ... N
) )
16 frn 6053 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) --> ( 1 ... N )  ->  ran  ( 2nd `  ( 1st `  T ) )  C_  ( 1 ... N
) )
1714, 15, 163syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ran  ( 2nd `  ( 1st `  T ) ) 
C_  ( 1 ... N ) )
182, 17syl5ss 3614 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( 1 ... N
) )
19 poimirlem12.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  S )
20 elrabi 3359 . . . . . . . . . . . . . . . 16  |-  ( U  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  U  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
2120, 5eleq2s 2719 . . . . . . . . . . . . . . 15  |-  ( U  e.  S  ->  U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
22 xp1st 7198 . . . . . . . . . . . . . . 15  |-  ( U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  U )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
2319, 21, 223syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1st `  U
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
24 xp2nd 7199 . . . . . . . . . . . . . 14  |-  ( ( 1st `  U )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  U ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
2523, 24syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  ( 1st `  U ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
26 fvex 6201 . . . . . . . . . . . . . 14  |-  ( 2nd `  ( 1st `  U
) )  e.  _V
27 f1oeq1 6127 . . . . . . . . . . . . . 14  |-  ( f  =  ( 2nd `  ( 1st `  U ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
2826, 27elab 3350 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  U ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  U
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
2925, 28sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd `  ( 1st `  U ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
30 f1ofo 6144 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  U
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
31 foima 6120 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
3229, 30, 313syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
3318, 32sseqtr4d 3642 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) ) )
3433ssdifd 3746 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )  C_  ( (
( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  \ 
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
35 dff1o3 6143 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  U
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  U ) ) ) )
3635simprbi 480 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  U ) ) )
37 imadif 5973 . . . . . . . . . . 11  |-  ( Fun  `' ( 2nd `  ( 1st `  U ) )  ->  ( ( 2nd `  ( 1st `  U
) ) " (
( 1 ... N
)  \  ( 1 ... M ) ) )  =  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  \ 
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
3829, 36, 373syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... N )  \ 
( 1 ... M
) ) )  =  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) ) )
39 difun2 4048 . . . . . . . . . . . 12  |-  ( ( ( ( M  + 
1 ) ... N
)  u.  ( 1 ... M ) ) 
\  ( 1 ... M ) )  =  ( ( ( M  +  1 ) ... N )  \  (
1 ... M ) )
40 poimirlem12.6 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  ( 0 ... ( N  - 
1 ) ) )
41 elfznn0 12433 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( 0 ... ( N  -  1 ) )  ->  M  e.  NN0 )
42 nn0p1nn 11332 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  NN )
4340, 41, 423syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  +  1 )  e.  NN )
44 nnuz 11723 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
4543, 44syl6eleq 2711 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
1 ) )
46 poimir.0 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
4746nncnd 11036 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  CC )
48 npcan1 10455 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
4947, 48syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
50 elfzuz3 12339 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M
) )
51 peano2uz 11741 . . . . . . . . . . . . . . . . 17  |-  ( ( N  -  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  M )
)
5240, 50, 513syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  M ) )
5349, 52eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54 fzsplit2 12366 . . . . . . . . . . . . . . 15  |-  ( ( ( M  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  M )
)  ->  ( 1 ... N )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )
5545, 53, 54syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) ) )
56 uncom 3757 . . . . . . . . . . . . . 14  |-  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) )  =  ( ( ( M  +  1 ) ... N )  u.  (
1 ... M ) )
5755, 56syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... N
)  =  ( ( ( M  +  1 ) ... N )  u.  ( 1 ... M ) ) )
5857difeq1d 3727 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1 ... N )  \  (
1 ... M ) )  =  ( ( ( ( M  +  1 ) ... N )  u.  ( 1 ... M ) )  \ 
( 1 ... M
) ) )
59 incom 3805 . . . . . . . . . . . . . 14  |-  ( ( ( M  +  1 ) ... N )  i^i  ( 1 ... M ) )  =  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )
6040, 41syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
6160nn0red 11352 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  RR )
6261ltp1d 10954 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  <  ( M  +  1 ) )
63 fzdisj 12368 . . . . . . . . . . . . . . 15  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
6462, 63syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
6559, 64syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  +  1 ) ... N )  i^i  (
1 ... M ) )  =  (/) )
66 disj3 4021 . . . . . . . . . . . . 13  |-  ( ( ( ( M  + 
1 ) ... N
)  i^i  ( 1 ... M ) )  =  (/)  <->  ( ( M  +  1 ) ... N )  =  ( ( ( M  + 
1 ) ... N
)  \  ( 1 ... M ) ) )
6765, 66sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  =  ( ( ( M  +  1 ) ... N ) 
\  ( 1 ... M ) ) )
6839, 58, 673eqtr4a 2682 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1 ... N )  \  (
1 ... M ) )  =  ( ( M  +  1 ) ... N ) )
6968imaeq2d 5466 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... N )  \ 
( 1 ... M
) ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
7038, 69eqtr3d 2658 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )  =  ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) ) )
7134, 70sseqtrd 3641 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )  C_  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )
7271sselda 3603 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) 
\  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) ) )  ->  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
731, 72sylan2br 493 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
74 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  ( 2nd `  t )  =  ( 2nd `  U
) )
7574breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  U  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  U ) ) )
7675ifbid 4108 . . . . . . . . . . . . . . . . 17  |-  ( t  =  U  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) ) )
7776csbeq1d 3540 . . . . . . . . . . . . . . . 16  |-  ( t  =  U  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
78 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  ( 1st `  t )  =  ( 1st `  U
) )
7978fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  U  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  U ) ) )
8078fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  U  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  U ) ) )
8180imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  U  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) ) )
8281xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... j
) )  X.  {
1 } ) )
8380imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  U  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) ) )
8483xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  U  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
8582, 84uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  U  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
8679, 85oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( t  =  U  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8786csbeq2dv 3992 . . . . . . . . . . . . . . . 16  |-  ( t  =  U  ->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8877, 87eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( t  =  U  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
8988mpteq2dv 4745 . . . . . . . . . . . . . 14  |-  ( t  =  U  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
9089eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( t  =  U  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
9190, 5elrab2 3366 . . . . . . . . . . . 12  |-  ( U  e.  S  <->  ( U  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
9291simprbi 480 . . . . . . . . . . 11  |-  ( U  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  U
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
9319, 92syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
94 breq1 4656 . . . . . . . . . . . . . 14  |-  ( y  =  M  ->  (
y  <  ( 2nd `  U )  <->  M  <  ( 2nd `  U ) ) )
95 id 22 . . . . . . . . . . . . . 14  |-  ( y  =  M  ->  y  =  M )
9694, 95ifbieq1d 4109 . . . . . . . . . . . . 13  |-  ( y  =  M  ->  if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  =  if ( M  <  ( 2nd `  U
) ,  M , 
( y  +  1 ) ) )
9746nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  RR )
98 peano2rem 10348 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
9997, 98syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  1 )  e.  RR )
100 elfzle2 12345 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( 0 ... ( N  -  1 ) )  ->  M  <_  ( N  -  1 ) )
10140, 100syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  <_  ( N  -  1 ) )
10297ltm1d 10956 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  -  1 )  <  N )
10361, 99, 97, 101, 102lelttrd 10195 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  <  N )
104 poimirlem12.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  U
)  =  N )
105103, 104breqtrrd 4681 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  <  ( 2nd `  U ) )
106105iftrued 4094 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( M  < 
( 2nd `  U
) ,  M , 
( y  +  1 ) )  =  M )
10796, 106sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  M )  ->  if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  =  M )
108107csbeq1d 3540 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  M )  ->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ M  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
109 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  M  ->  (
1 ... j )  =  ( 1 ... M
) )
110109imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )
111110xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } ) )
112 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  M  ->  (
j  +  1 )  =  ( M  + 
1 ) )
113112oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  M  ->  (
( j  +  1 ) ... N )  =  ( ( M  +  1 ) ... N ) )
114113imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
115114xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )
116111, 115uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
117116oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( j  =  M  ->  (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
118117adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  =  M )  ->  (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
11940, 118csbied 3560 . . . . . . . . . . . 12  |-  ( ph  ->  [_ M  /  j ]_ ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
120119adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  M )  ->  [_ M  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
121108, 120eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  M )  ->  [_ if ( y  <  ( 2nd `  U ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
122 ovexd 6680 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
12393, 121, 40, 122fvmptd 6288 . . . . . . . . 9  |-  ( ph  ->  ( F `  M
)  =  ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
124123fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  M ) `  y
)  =  ( ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
125124adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( F `
 M ) `  y )  =  ( ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
126 imassrn 5477 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  C_  ran  ( 2nd `  ( 1st `  U ) )
127 f1of 6137 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  U
) ) : ( 1 ... N ) --> ( 1 ... N
) )
128 frn 6053 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  U ) ) : ( 1 ... N
) --> ( 1 ... N )  ->  ran  ( 2nd `  ( 1st `  U ) )  C_  ( 1 ... N
) )
12929, 127, 1283syl 18 . . . . . . . . . 10  |-  ( ph  ->  ran  ( 2nd `  ( 1st `  U ) ) 
C_  ( 1 ... N ) )
130126, 129syl5ss 3614 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  C_  ( 1 ... N
) )
131130sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  y  e.  ( 1 ... N ) )
132 xp1st 7198 . . . . . . . . . . 11  |-  ( ( 1st `  U )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
133 elmapfn 7880 . . . . . . . . . . 11  |-  ( ( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  U ) )  Fn  ( 1 ... N ) )
13423, 132, 1333syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( 1st `  U ) )  Fn  ( 1 ... N ) )
135134adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( 1st `  ( 1st `  U ) )  Fn  ( 1 ... N ) )
136 1ex 10035 . . . . . . . . . . . . . 14  |-  1  e.  _V
137 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) ) )
138136, 137ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )
139 c0ex 10034 . . . . . . . . . . . . . 14  |-  0  e.  _V
140 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )
141139, 140ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )
142138, 141pm3.2i 471 . . . . . . . . . . . 12  |-  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
143 imain 5974 . . . . . . . . . . . . . 14  |-  ( Fun  `' ( 2nd `  ( 1st `  U ) )  ->  ( ( 2nd `  ( 1st `  U
) ) " (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) ) )
14429, 36, 1433syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) ) )
14564imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  U ) )
" (/) ) )
146 ima0 5481 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  U ) ) " (/) )  =  (/)
147145, 146syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
148144, 147eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
149 fnun 5997 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  i^i  (
( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) ) )
150142, 148, 149sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) ) )
151 imaundi 5545 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  U ) ) "
( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )
15255imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) ) )
153152, 32eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  U ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( 1 ... N
) )
154151, 153syl5eqr 2670 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
155154fneq2d 5982 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  u.  (
( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) ) )
156150, 155mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) )
157156adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
158 ovexd 6680 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( 1 ... N )  e.  _V )
159 inidm 3822 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
160 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  =  ( ( 1st `  ( 1st `  U ) ) `  y ) )
161 fvun2 6270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) )  /\  (
( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) `
 y ) )
162138, 141, 161mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) ) )  -> 
( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) `  y ) )
163148, 162sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) `  y ) )
164139fvconst2 6469 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 2nd `  ( 1st `  U
) ) " (
( M  +  1 ) ... N ) )  ->  ( (
( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) `
 y )  =  0 )
165164adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) `
 y )  =  0 )
166163, 165eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  0 )
167166adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  0 )
168135, 157, 158, 158, 159, 160, 167ofval 6906 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
)  =  ( ( ( 1st `  ( 1st `  U ) ) `
 y )  +  0 ) )
169131, 168mpdan 702 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( 1st `  ( 1st `  U ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  U ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  y )  =  ( ( ( 1st `  ( 1st `  U ) ) `  y )  +  0 ) )
170 elmapi 7879 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( 1st `  U ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  U ) ) : ( 1 ... N ) --> ( 0..^ K ) )
17123, 132, 1703syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  ( 1st `  U ) ) : ( 1 ... N ) --> ( 0..^ K ) )
172171ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  U ) ) `
 y )  e.  ( 0..^ K ) )
173 elfzonn0 12512 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( 1st `  U ) ) `
 y )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  e.  NN0 )
174172, 173syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  U ) ) `
 y )  e. 
NN0 )
175174nn0cnd 11353 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  U ) ) `
 y )  e.  CC )
176175addid1d 10236 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  U ) ) `
 y )  +  0 )  =  ( ( 1st `  ( 1st `  U ) ) `
 y ) )
177131, 176syldan 487 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( ( 1st `  ( 1st `  U ) ) `  y )  +  0 )  =  ( ( 1st `  ( 1st `  U ) ) `  y ) )
178125, 169, 1773eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( ( M  +  1 ) ... N ) ) )  ->  ( ( F `
 M ) `  y )  =  ( ( 1st `  ( 1st `  U ) ) `
 y ) )
17973, 178syldan 487 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( ( F `  M ) `  y )  =  ( ( 1st `  ( 1st `  U ) ) `
 y ) )
180 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
181180breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
182181ifbid 4108 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
183182csbeq1d 3540 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
184 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
185184fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
186184fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
187186imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
188187xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
189186imaeq1d 5465 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
190189xpeq1d 5138 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
191188, 190uneq12d 3768 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
192185, 191oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
193192csbeq2dv 3992 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
194183, 193eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
195194mpteq2dv 4745 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
196195eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
197196, 5elrab2 3366 . . . . . . . . . . . 12  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
198197simprbi 480 . . . . . . . . . . 11  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
1993, 198syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
200 breq1 4656 . . . . . . . . . . . . . 14  |-  ( y  =  M  ->  (
y  <  ( 2nd `  T )  <->  M  <  ( 2nd `  T ) ) )
201200, 95ifbieq1d 4109 . . . . . . . . . . . . 13  |-  ( y  =  M  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( M  <  ( 2nd `  T
) ,  M , 
( y  +  1 ) ) )
202 poimirlem12.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  T
)  =  N )
203103, 202breqtrrd 4681 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  <  ( 2nd `  T ) )
204203iftrued 4094 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( M  < 
( 2nd `  T
) ,  M , 
( y  +  1 ) )  =  M )
205201, 204sylan9eqr 2678 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  M )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  M )
206205csbeq1d 3540 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  M )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
207109imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
208207xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) )
209113imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
210209xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )
211208, 210uneq12d 3768 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
212211oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( j  =  M  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
213212adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  =  M )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
21440, 213csbied 3560 . . . . . . . . . . . 12  |-  ( ph  ->  [_ M  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
215214adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  M )  ->  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
216206, 215eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  M )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
217 ovexd 6680 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
218199, 216, 40, 217fvmptd 6288 . . . . . . . . 9  |-  ( ph  ->  ( F `  M
)  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
219218fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  M ) `  y
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
220219adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( F `
 M ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
) )
22118sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  y  e.  ( 1 ... N ) )
222 xp1st 7198 . . . . . . . . . . 11  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
223 elmapfn 7880 . . . . . . . . . . 11  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
2248, 222, 2233syl 18 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
225224adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
226 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) )
227136, 226ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )
228 fnconstg 6093 . . . . . . . . . . . . . 14  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )
229139, 228ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )
230227, 229pm3.2i 471 . . . . . . . . . . . 12  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
231 dff1o3 6143 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
232231simprbi 480 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
233 imain 5974 . . . . . . . . . . . . . 14  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
23414, 232, 2333syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
23564imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
236 ima0 5481 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
237235, 236syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
238234, 237eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
239 fnun 5997 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
240230, 238, 239sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
241 imaundi 5545 . . . . . . . . . . . . 13  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
24255imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) ) )
243 f1ofo 6144 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
244 foima 6120 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
24514, 243, 2443syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
246242, 245eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( 1 ... N
) )
247241, 246syl5eqr 2670 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
248247fneq2d 5982 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) ) )
249240, 248mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) )
250249adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
251 ovexd 6680 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( 1 ... N )  e.  _V )
252 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  T
) ) `  y
)  =  ( ( 1st `  ( 1st `  T ) ) `  y ) )
253 fvun1 6269 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } ) `
 y ) )
254227, 229, 253mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/)  /\  y  e.  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) ) )  -> 
( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  y ) )
255238, 254sylan 488 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  y ) )
256136fvconst2 6469 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } ) `
 y )  =  1 )
257256adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } ) `
 y )  =  1 )
258255, 257eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 y )  =  1 )
259258adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  y )  =  1 )
260225, 250, 251, 251, 159, 252, 259ofval 6906 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  /\  y  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  y
)  =  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 ) )
261221, 260mpdan 702 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) ) `  y )  +  1 ) )
262220, 261eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( F `
 M ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 ) )
263262adantrr 753 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( ( F `  M ) `  y )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 ) )
26446nngt0d 11064 . . . . . . . . . 10  |-  ( ph  ->  0  <  N )
265264, 104breqtrrd 4681 . . . . . . . . 9  |-  ( ph  ->  0  <  ( 2nd `  U ) )
26646, 5, 19, 265poimirlem5 33414 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  ( 1st `  ( 1st `  U
) ) )
267264, 202breqtrrd 4681 . . . . . . . . 9  |-  ( ph  ->  0  <  ( 2nd `  T ) )
26846, 5, 3, 267poimirlem5 33414 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  ( 1st `  ( 1st `  T
) ) )
269266, 268eqtr3d 2658 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( 1st `  U ) )  =  ( 1st `  ( 1st `  T ) ) )
270269fveq1d 6193 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( 1st `  U ) ) `
 y )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
271270adantr 481 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( ( 1st `  ( 1st `  U
) ) `  y
)  =  ( ( 1st `  ( 1st `  T ) ) `  y ) )
272179, 263, 2713eqtr3d 2664 . . . 4  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  ( (
( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
273 elmapi 7879 . . . . . . . . . . . 12  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
2748, 222, 2733syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
275274ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  e.  ( 0..^ K ) )
276 elfzonn0 12512 . . . . . . . . . 10  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 y )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  y
)  e.  NN0 )
277275, 276syl 17 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  e. 
NN0 )
278277nn0red 11352 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  e.  RR )
279278ltp1d 10954 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 y )  < 
( ( ( 1st `  ( 1st `  T
) ) `  y
)  +  1 ) )
280278, 279gtned 10172 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =/=  (
( 1st `  ( 1st `  T ) ) `
 y ) )
281221, 280syldan 487 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  y )  +  1 )  =/=  ( ( 1st `  ( 1st `  T ) ) `  y ) )
282281neneqd 2799 . . . . 5  |-  ( (
ph  /\  y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  -.  ( (
( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
283282adantrr 753 . . . 4  |-  ( (
ph  /\  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )  ->  -.  (
( ( 1st `  ( 1st `  T ) ) `
 y )  +  1 )  =  ( ( 1st `  ( 1st `  T ) ) `
 y ) )
284272, 283pm2.65da 600 . . 3  |-  ( ph  ->  -.  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
285 iman 440 . . 3  |-  ( ( y  e.  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  ->  y  e.  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )  <->  -.  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  -.  y  e.  (
( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) ) )
286284, 285sylibr 224 . 2  |-  ( ph  ->  ( y  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  -> 
y  e.  ( ( 2nd `  ( 1st `  U ) ) "
( 1 ... M
) ) ) )
287286ssrdv 3609 1  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  C_  ( ( 2nd `  ( 1st `  U ) )
" ( 1 ... M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem14  33423
  Copyright terms: Public domain W3C validator