MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  powm2modprm Structured version   Visualization version   Unicode version

Theorem powm2modprm 15508
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  Prime )
2 simpr 477 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  ZZ )
32adantr 481 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  ZZ )
4 m1dvdsndvds 15503 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  -.  P  ||  A ) )
54imp 445 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  -.  P  ||  A )
6 eqid 2622 . . . . . 6  |-  ( ( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
)
76modprminv 15504 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 ) )
8 simpr 477 . . . . . 6  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1 )
98eqcomd 2628 . . . . 5  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  1  =  ( ( A  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
107, 9syl 17 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  =  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
111, 3, 5, 10syl3anc 1326 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  1  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
12 modprm1div 15502 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  mod  P
)  =  1  <->  P  ||  ( A  -  1 ) ) )
1312biimpar 502 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  mod  P )  =  1 )
1413oveq1d 6665 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  =  ( 1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) ) )
1514oveq1d 6665 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( 1  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
16 zre 11381 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
1716ad2antlr 763 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  RR )
18 prmm2nn0 15410 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  ( P  -  2 )  e. 
NN0 )
1918anim2i 593 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  Prime )  -> 
( A  e.  ZZ  /\  ( P  -  2 )  e.  NN0 )
)
2019ancoms 469 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e.  NN0 ) )
2120adantr 481 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e. 
NN0 ) )
22 zexpcl 12875 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
2321, 22syl 17 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
24 prmnn 15388 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2524adantr 481 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  P  e.  NN )
2625adantr 481 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  NN )
2723, 26zmodcld 12691 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  NN0 )
2827nn0zd 11480 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  ZZ )
2924nnrpd 11870 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR+ )
3029adantr 481 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  P  e.  RR+ )
3130adantr 481 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  RR+ )
32 modmulmod 12735 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ZZ  /\  P  e.  RR+ )  -> 
( ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  ( ( A  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
3317, 28, 31, 32syl3anc 1326 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
3420, 22syl 17 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
3534, 25zmodcld 12691 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  NN0 )
3635nn0cnd 11353 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  CC )
3736mulid2d 10058 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
3837oveq1d 6665 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( 1  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  -  2 ) )  mod  P )  mod 
P ) )
3938adantr 481 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
) )
40 reexpcl 12877 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  RR )
4116, 18, 40syl2anr 495 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ ( P  - 
2 ) )  e.  RR )
4241, 30jca 554 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ ) )
4342adantr 481 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  e.  RR  /\  P  e.  RR+ ) )
44 modabs2 12704 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
4543, 44syl 17 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A ^ ( P  -  2 ) )  mod  P )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4639, 45eqtrd 2656 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4715, 33, 463eqtr3d 2664 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
4811, 47eqtr2d 2657 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  =  1 )
4948ex 450 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   1c1 9937    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832   ...cfz 12326    mod cmo 12668   ^cexp 12860    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  numclwwlk5  27246
  Copyright terms: Public domain W3C validator