MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk5 Structured version   Visualization version   Unicode version

Theorem numclwwlk5 27246
Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.)
Hypotheses
Ref Expression
numclwwlk3.v  |-  V  =  (Vtx `  G )
numclwwlk3.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
Assertion
Ref Expression
numclwwlk5  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( X F P ) )  mod  P )  =  1 )
Distinct variable groups:    n, G, v, w    n, V, v   
n, X, v, w   
w, V    w, F    w, K    P, n, v, w
Allowed substitution hints:    F( v, n)    K( v, n)

Proof of Theorem numclwwlk5
StepHypRef Expression
1 simpl1 1064 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  ->  G RegUSGraph  K )
2 simpr1 1067 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  ->  X  e.  V )
3 numclwwlk3.v . . . . . . . . . . . . 13  |-  V  =  (Vtx `  G )
43finrusgrfusgr 26461 . . . . . . . . . . . 12  |-  ( ( G RegUSGraph  K  /\  V  e. 
Fin )  ->  G  e. FinUSGraph  )
543adant2 1080 . . . . . . . . . . 11  |-  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e.  Fin )  ->  G  e. FinUSGraph  )
65adantl 482 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  ( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin ) )  ->  G  e. FinUSGraph  )
7 simpr1 1067 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  ( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin ) )  ->  G RegUSGraph  K )
8 ne0i 3921 . . . . . . . . . . 11  |-  ( X  e.  V  ->  V  =/=  (/) )
98adantr 481 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  ( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin ) )  ->  V  =/=  (/) )
103frusgrnn0 26467 . . . . . . . . . 10  |-  ( ( G  e. FinUSGraph  /\  G RegUSGraph  K  /\  V  =/=  (/) )  ->  K  e.  NN0 )
116, 7, 9, 10syl3anc 1326 . . . . . . . . 9  |-  ( ( X  e.  V  /\  ( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin ) )  ->  K  e.  NN0 )
1211ex 450 . . . . . . . 8  |-  ( X  e.  V  ->  (
( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin )  ->  K  e.  NN0 ) )
13123ad2ant1 1082 . . . . . . 7  |-  ( ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) )  ->  (
( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin )  ->  K  e.  NN0 ) )
1413impcom 446 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  ->  K  e.  NN0 )
151, 2, 143jca 1242 . . . . 5  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  -> 
( G RegUSGraph  K  /\  X  e.  V  /\  K  e. 
NN0 ) )
16 simpr3 1069 . . . . 5  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  -> 
2  ||  ( K  -  1 ) )
17 numclwwlk3.f . . . . . 6  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
183, 17numclwwlk5lem 27245 . . . . 5  |-  ( ( G RegUSGraph  K  /\  X  e.  V  /\  K  e. 
NN0 )  ->  (
2  ||  ( K  -  1 )  -> 
( ( # `  ( X F 2 ) )  mod  2 )  =  1 ) )
1915, 16, 18sylc 65 . . . 4  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( X F 2 ) )  mod  2 )  =  1 )
2019a1i 11 . . 3  |-  ( P  =  2  ->  (
( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( X F 2 ) )  mod  2 )  =  1 ) )
21 eleq1 2689 . . . . 5  |-  ( P  =  2  ->  ( P  e.  Prime  <->  2  e.  Prime ) )
22 breq1 4656 . . . . 5  |-  ( P  =  2  ->  ( P  ||  ( K  - 
1 )  <->  2  ||  ( K  -  1
) ) )
2321, 223anbi23d 1402 . . . 4  |-  ( P  =  2  ->  (
( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  <-> 
( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) ) )
2423anbi2d 740 . . 3  |-  ( P  =  2  ->  (
( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  <->  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e.  Fin )  /\  ( X  e.  V  /\  2  e.  Prime  /\  2  ||  ( K  -  1 ) ) ) ) )
25 oveq2 6658 . . . . . 6  |-  ( P  =  2  ->  ( X F P )  =  ( X F 2 ) )
2625fveq2d 6195 . . . . 5  |-  ( P  =  2  ->  ( # `
 ( X F P ) )  =  ( # `  ( X F 2 ) ) )
27 id 22 . . . . 5  |-  ( P  =  2  ->  P  =  2 )
2826, 27oveq12d 6668 . . . 4  |-  ( P  =  2  ->  (
( # `  ( X F P ) )  mod  P )  =  ( ( # `  ( X F 2 ) )  mod  2 ) )
2928eqeq1d 2624 . . 3  |-  ( P  =  2  ->  (
( ( # `  ( X F P ) )  mod  P )  =  1  <->  ( ( # `  ( X F 2 ) )  mod  2
)  =  1 ) )
3020, 24, 293imtr4d 283 . 2  |-  ( P  =  2  ->  (
( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( X F P ) )  mod  P )  =  1 ) )
31 3simpa 1058 . . . . . . . 8  |-  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e.  Fin )  ->  ( G RegUSGraph  K  /\  G  e. FriendGraph  ) )
3231adantr 481 . . . . . . 7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( G RegUSGraph  K  /\  G  e. FriendGraph  ) )
3332adantl 482 . . . . . 6  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( G RegUSGraph  K  /\  G  e. FriendGraph  ) )
34 simprl3 1108 . . . . . 6  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  V  e.  Fin )
35 simprr1 1109 . . . . . 6  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  X  e.  V
)
36 eldifsn 4317 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
37 oddprmge3 15412 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
3 ) )
3836, 37sylbir 225 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  P  e.  ( ZZ>= `  3 )
)
3938ex 450 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  =/=  2  ->  P  e.  ( ZZ>= `  3 )
) )
40393ad2ant2 1083 . . . . . . . 8  |-  ( ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  ( P  =/=  2  ->  P  e.  ( ZZ>= `  3 )
) )
4140adantl 482 . . . . . . 7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( P  =/=  2  ->  P  e.  ( ZZ>= ` 
3 ) ) )
4241impcom 446 . . . . . 6  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  P  e.  (
ZZ>= `  3 ) )
433, 17numclwwlk3 27243 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  )  /\  ( V  e.  Fin  /\  X  e.  V  /\  P  e.  ( ZZ>= `  3 )
) )  ->  ( # `
 ( X F P ) )  =  ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  +  ( K ^ ( P  - 
2 ) ) ) )
4433, 34, 35, 42, 43syl13anc 1328 . . . . 5  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( # `  ( X F P ) )  =  ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  +  ( K ^ ( P  - 
2 ) ) ) )
4544oveq1d 6665 . . . 4  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( ( # `  ( X F P ) )  mod  P
)  =  ( ( ( ( K  - 
1 )  x.  ( # `
 ( X F ( P  -  2 ) ) ) )  +  ( K ^
( P  -  2 ) ) )  mod 
P ) )
46123ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  (
( G RegUSGraph  K  /\  G  e. FriendGraph 
/\  V  e.  Fin )  ->  K  e.  NN0 ) )
4746impcom 446 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  K  e.  NN0 )
4847nn0zd 11480 . . . . . . . . 9  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  K  e.  ZZ )
49 peano2zm 11420 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
50 zre 11381 . . . . . . . . 9  |-  ( ( K  -  1 )  e.  ZZ  ->  ( K  -  1 )  e.  RR )
5148, 49, 503syl 18 . . . . . . . 8  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( K  -  1 )  e.  RR )
52 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  V  e.  Fin )
53 simpr1 1067 . . . . . . . . . . 11  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  X  e.  V )
54 prmm2nn0 15410 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  ( P  -  2 )  e. 
NN0 )
55543ad2ant2 1083 . . . . . . . . . . . 12  |-  ( ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  ( P  -  2 )  e.  NN0 )
5655adantl 482 . . . . . . . . . . 11  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( P  -  2 )  e.  NN0 )
5752, 53, 563jca 1242 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( V  e.  Fin  /\  X  e.  V  /\  ( P  -  2
)  e.  NN0 )
)
5817, 3numclwwlkffin0 27215 . . . . . . . . . 10  |-  ( ( V  e.  Fin  /\  X  e.  V  /\  ( P  -  2
)  e.  NN0 )  ->  ( X F ( P  -  2 ) )  e.  Fin )
59 hashcl 13147 . . . . . . . . . 10  |-  ( ( X F ( P  -  2 ) )  e.  Fin  ->  ( # `
 ( X F ( P  -  2 ) ) )  e. 
NN0 )
6057, 58, 593syl 18 . . . . . . . . 9  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( # `  ( X F ( P  - 
2 ) ) )  e.  NN0 )
6160nn0red 11352 . . . . . . . 8  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( # `  ( X F ( P  - 
2 ) ) )  e.  RR )
6251, 61remulcld 10070 . . . . . . 7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( K  - 
1 )  x.  ( # `
 ( X F ( P  -  2 ) ) ) )  e.  RR )
6347nn0red 11352 . . . . . . . 8  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  K  e.  RR )
6463, 56reexpcld 13025 . . . . . . 7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( K ^ ( P  -  2 ) )  e.  RR )
65 prmnn 15388 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6665nnrpd 11870 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  RR+ )
67663ad2ant2 1083 . . . . . . . 8  |-  ( ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  P  e.  RR+ )
6867adantl 482 . . . . . . 7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  e.  RR+ )
6962, 64, 683jca 1242 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  e.  RR  /\  ( K ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ ) )
7069adantl 482 . . . . 5  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  e.  RR  /\  ( K ^ ( P  -  2 ) )  e.  RR  /\  P  e.  RR+ ) )
71 modaddabs 12708 . . . . . 6  |-  ( ( ( ( K  - 
1 )  x.  ( # `
 ( X F ( P  -  2 ) ) ) )  e.  RR  /\  ( K ^ ( P  - 
2 ) )  e.  RR  /\  P  e.  RR+ )  ->  ( ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  mod  P )  +  ( ( K ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  +  ( K ^ ( P  - 
2 ) ) )  mod  P ) )
7271eqcomd 2628 . . . . 5  |-  ( ( ( ( K  - 
1 )  x.  ( # `
 ( X F ( P  -  2 ) ) ) )  e.  RR  /\  ( K ^ ( P  - 
2 ) )  e.  RR  /\  P  e.  RR+ )  ->  ( ( ( ( K  - 
1 )  x.  ( # `
 ( X F ( P  -  2 ) ) ) )  +  ( K ^
( P  -  2 ) ) )  mod 
P )  =  ( ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  mod  P )  +  ( ( K ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
7370, 72syl 17 . . . 4  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  -  2 ) ) ) )  +  ( K ^ ( P  -  2 ) ) )  mod  P
)  =  ( ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  mod  P )  +  ( ( K ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
74653ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  P  e.  NN )
7574adantl 482 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  e.  NN )
76 nn0z 11400 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  K  e.  ZZ )
7747, 76, 493syl 18 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( K  -  1 )  e.  ZZ )
7860nn0zd 11480 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( # `  ( X F ( P  - 
2 ) ) )  e.  ZZ )
7975, 77, 783jca 1242 . . . . . . . . 9  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( P  e.  NN  /\  ( K  -  1 )  e.  ZZ  /\  ( # `  ( X F ( P  - 
2 ) ) )  e.  ZZ ) )
80 simpr3 1069 . . . . . . . . 9  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  ||  ( K  - 
1 ) )
81 mulmoddvds 15051 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( K  -  1
)  e.  ZZ  /\  ( # `  ( X F ( P  - 
2 ) ) )  e.  ZZ )  -> 
( P  ||  ( K  -  1 )  ->  ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  mod  P )  =  0 ) )
8279, 80, 81sylc 65 . . . . . . . 8  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  mod  P )  =  0 )
83 simpr2 1068 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  ->  P  e.  Prime )
8483, 48jca 554 . . . . . . . . 9  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( P  e.  Prime  /\  K  e.  ZZ ) )
85 powm2modprm 15508 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  ZZ )  ->  ( P  ||  ( K  - 
1 )  ->  (
( K ^ ( P  -  2 ) )  mod  P )  =  1 ) )
8684, 80, 85sylc 65 . . . . . . . 8  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( K ^
( P  -  2 ) )  mod  P
)  =  1 )
8782, 86oveq12d 6668 . . . . . . 7  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  - 
2 ) ) ) )  mod  P )  +  ( ( K ^ ( P  - 
2 ) )  mod 
P ) )  =  ( 0  +  1 ) )
8887oveq1d 6665 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  -  2 ) ) ) )  mod 
P )  +  ( ( K ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( 0  +  1 )  mod 
P ) )
89 0p1e1 11132 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
9089oveq1i 6660 . . . . . . . . 9  |-  ( ( 0  +  1 )  mod  P )  =  ( 1  mod  P
)
9165nnred 11035 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  RR )
92 prmgt1 15409 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  1  < 
P )
93 1mod 12702 . . . . . . . . . 10  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
9491, 92, 93syl2anc 693 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( 1  mod  P )  =  1 )
9590, 94syl5eq 2668 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( ( 0  +  1 )  mod  P )  =  1 )
96953ad2ant2 1083 . . . . . . 7  |-  ( ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) )  ->  (
( 0  +  1 )  mod  P )  =  1 )
9796adantl 482 . . . . . 6  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( 0  +  1 )  mod  P
)  =  1 )
9888, 97eqtrd 2656 . . . . 5  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( ( ( ( K  -  1 )  x.  ( # `  ( X F ( P  -  2 ) ) ) )  mod 
P )  +  ( ( K ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1 )
9998adantl 482 . . . 4  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( ( ( ( ( K  - 
1 )  x.  ( # `
 ( X F ( P  -  2 ) ) ) )  mod  P )  +  ( ( K ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )
10045, 73, 993eqtrd 2660 . . 3  |-  ( ( P  =/=  2  /\  ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) ) )  ->  ( ( # `  ( X F P ) )  mod  P
)  =  1 )
101100ex 450 . 2  |-  ( P  =/=  2  ->  (
( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( X F P ) )  mod  P )  =  1 ) )
10230, 101pm2.61ine 2877 1  |-  ( ( ( G RegUSGraph  K  /\  G  e. FriendGraph  /\  V  e. 
Fin )  /\  ( X  e.  V  /\  P  e.  Prime  /\  P  ||  ( K  -  1 ) ) )  -> 
( ( # `  ( X F P ) )  mod  P )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    \ cdif 3571   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832    mod cmo 12668   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385  Vtxcvtx 25874   FinUSGraph cfusgr 26208   RegUSGraph crusgr 26452   ClWWalksN cclwwlksn 26876   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878  df-frgr 27121
This theorem is referenced by:  numclwwlk6  27248
  Copyright terms: Public domain W3C validator