Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodindf Structured version   Visualization version   Unicode version

Theorem prodindf 30085
Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
prodindf.1  |-  ( ph  ->  O  e.  V )
prodindf.2  |-  ( ph  ->  A  e.  Fin )
prodindf.3  |-  ( ph  ->  B  C_  O )
prodindf.4  |-  ( ph  ->  F : A --> O )
Assertion
Ref Expression
prodindf  |-  ( ph  ->  prod_ k  e.  A  ( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  if ( ran  F  C_  B ,  1 , 
0 ) )
Distinct variable groups:    A, k    B, k    k, F    k, O    ph, k
Allowed substitution hint:    V( k)

Proof of Theorem prodindf
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( k  =  l  ->  ( F `  k )  =  ( F `  l ) )
21fveq2d 6195 . . 3  |-  ( k  =  l  ->  (
( (𝟭 `  O ) `  B ) `  ( F `  k )
)  =  ( ( (𝟭 `  O ) `  B ) `  ( F `  l )
) )
3 prodindf.2 . . 3  |-  ( ph  ->  A  e.  Fin )
4 prodindf.1 . . . . . 6  |-  ( ph  ->  O  e.  V )
5 prodindf.3 . . . . . 6  |-  ( ph  ->  B  C_  O )
6 indf 30077 . . . . . 6  |-  ( ( O  e.  V  /\  B  C_  O )  -> 
( (𝟭 `  O ) `  B ) : O --> { 0 ,  1 } )
74, 5, 6syl2anc 693 . . . . 5  |-  ( ph  ->  ( (𝟭 `  O
) `  B ) : O --> { 0 ,  1 } )
87adantr 481 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  (
(𝟭 `  O ) `  B ) : O --> { 0 ,  1 } )
9 prodindf.4 . . . . 5  |-  ( ph  ->  F : A --> O )
109ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  O )
118, 10ffvelrnd 6360 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  (
( (𝟭 `  O ) `  B ) `  ( F `  k )
)  e.  { 0 ,  1 } )
122, 3, 11fprodex01 29571 . 2  |-  ( ph  ->  prod_ k  e.  A  ( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  if ( A. l  e.  A  ( ( (𝟭 `  O ) `  B
) `  ( F `  l ) )  =  1 ,  1 ,  0 ) )
13 fveq2 6191 . . . . . . 7  |-  ( l  =  k  ->  ( F `  l )  =  ( F `  k ) )
1413fveq2d 6195 . . . . . 6  |-  ( l  =  k  ->  (
( (𝟭 `  O ) `  B ) `  ( F `  l )
)  =  ( ( (𝟭 `  O ) `  B ) `  ( F `  k )
) )
1514eqeq1d 2624 . . . . 5  |-  ( l  =  k  ->  (
( ( (𝟭 `  O
) `  B ) `  ( F `  l
) )  =  1  <-> 
( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  1 ) )
1615cbvralv 3171 . . . 4  |-  ( A. l  e.  A  (
( (𝟭 `  O ) `  B ) `  ( F `  l )
)  =  1  <->  A. k  e.  A  (
( (𝟭 `  O ) `  B ) `  ( F `  k )
)  =  1 )
1716a1i 11 . . 3  |-  ( ph  ->  ( A. l  e.  A  ( ( (𝟭 `  O ) `  B
) `  ( F `  l ) )  =  1  <->  A. k  e.  A  ( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  1 ) )
1817ifbid 4108 . 2  |-  ( ph  ->  if ( A. l  e.  A  ( (
(𝟭 `  O ) `  B ) `  ( F `  l )
)  =  1 ,  1 ,  0 )  =  if ( A. k  e.  A  (
( (𝟭 `  O ) `  B ) `  ( F `  k )
)  =  1 ,  1 ,  0 ) )
19 eqid 2622 . . . . . 6  |-  ( k  e.  A  |->  ( F `
 k ) )  =  ( k  e.  A  |->  ( F `  k ) )
2019rnmptss 6392 . . . . 5  |-  ( A. k  e.  A  ( F `  k )  e.  B  ->  ran  (
k  e.  A  |->  ( F `  k ) )  C_  B )
21 nfv 1843 . . . . . . . 8  |-  F/ k
ph
22 nfmpt1 4747 . . . . . . . . . 10  |-  F/_ k
( k  e.  A  |->  ( F `  k
) )
2322nfrn 5368 . . . . . . . . 9  |-  F/_ k ran  ( k  e.  A  |->  ( F `  k
) )
24 nfcv 2764 . . . . . . . . 9  |-  F/_ k B
2523, 24nfss 3596 . . . . . . . 8  |-  F/ k ran  ( k  e.  A  |->  ( F `  k ) )  C_  B
2621, 25nfan 1828 . . . . . . 7  |-  F/ k ( ph  /\  ran  ( k  e.  A  |->  ( F `  k
) )  C_  B
)
27 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  ran  ( k  e.  A  |->  ( F `  k
) )  C_  B
)  /\  k  e.  A )  ->  ran  ( k  e.  A  |->  ( F `  k
) )  C_  B
)
289feqmptd 6249 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( F `
 k ) ) )
29 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( ph  ->  k  =  k )
3028, 29fveq12d 6197 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  k
)  =  ( ( k  e.  A  |->  ( F `  k ) ) `  k ) )
3130ralrimivw 2967 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  ( F `  k )  =  ( ( k  e.  A  |->  ( F `
 k ) ) `
 k ) )
3231r19.21bi 2932 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  =  ( ( k  e.  A  |->  ( F `
 k ) ) `
 k ) )
33 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( F : A --> O  ->  F  Fn  A )
349, 33syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  A )
3528fneq1d 5981 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  Fn  A  <->  ( k  e.  A  |->  ( F `  k ) )  Fn  A ) )
3634, 35mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  A  |->  ( F `  k
) )  Fn  A
)
3736adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  A  |->  ( F `  k ) )  Fn  A )
38 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
39 fnfvelrn 6356 . . . . . . . . . . . 12  |-  ( ( ( k  e.  A  |->  ( F `  k
) )  Fn  A  /\  k  e.  A
)  ->  ( (
k  e.  A  |->  ( F `  k ) ) `  k )  e.  ran  ( k  e.  A  |->  ( F `
 k ) ) )
4037, 38, 39syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( F `  k
) ) `  k
)  e.  ran  (
k  e.  A  |->  ( F `  k ) ) )
4132, 40eqeltrd 2701 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  ran  ( k  e.  A  |->  ( F `  k ) ) )
4241adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  ran  ( k  e.  A  |->  ( F `  k
) )  C_  B
)  /\  k  e.  A )  ->  ( F `  k )  e.  ran  ( k  e.  A  |->  ( F `  k ) ) )
4327, 42sseldd 3604 . . . . . . . 8  |-  ( ( ( ph  /\  ran  ( k  e.  A  |->  ( F `  k
) )  C_  B
)  /\  k  e.  A )  ->  ( F `  k )  e.  B )
4443ex 450 . . . . . . 7  |-  ( (
ph  /\  ran  ( k  e.  A  |->  ( F `
 k ) ) 
C_  B )  -> 
( k  e.  A  ->  ( F `  k
)  e.  B ) )
4526, 44ralrimi 2957 . . . . . 6  |-  ( (
ph  /\  ran  ( k  e.  A  |->  ( F `
 k ) ) 
C_  B )  ->  A. k  e.  A  ( F `  k )  e.  B )
4645ex 450 . . . . 5  |-  ( ph  ->  ( ran  ( k  e.  A  |->  ( F `
 k ) ) 
C_  B  ->  A. k  e.  A  ( F `  k )  e.  B
) )
4720, 46impbid2 216 . . . 4  |-  ( ph  ->  ( A. k  e.  A  ( F `  k )  e.  B  <->  ran  ( k  e.  A  |->  ( F `  k
) )  C_  B
) )
484adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  O  e.  V )
495adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  C_  O )
50 ind1a 30081 . . . . . 6  |-  ( ( O  e.  V  /\  B  C_  O  /\  ( F `  k )  e.  O )  ->  (
( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  1  <-> 
( F `  k
)  e.  B ) )
5148, 49, 10, 50syl3anc 1326 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  1  <-> 
( F `  k
)  e.  B ) )
5251ralbidva 2985 . . . 4  |-  ( ph  ->  ( A. k  e.  A  ( ( (𝟭 `  O ) `  B
) `  ( F `  k ) )  =  1  <->  A. k  e.  A  ( F `  k )  e.  B ) )
5328rneqd 5353 . . . . 5  |-  ( ph  ->  ran  F  =  ran  ( k  e.  A  |->  ( F `  k
) ) )
5453sseq1d 3632 . . . 4  |-  ( ph  ->  ( ran  F  C_  B 
<->  ran  ( k  e.  A  |->  ( F `  k ) )  C_  B ) )
5547, 52, 543bitr4d 300 . . 3  |-  ( ph  ->  ( A. k  e.  A  ( ( (𝟭 `  O ) `  B
) `  ( F `  k ) )  =  1  <->  ran  F  C_  B
) )
5655ifbid 4108 . 2  |-  ( ph  ->  if ( A. k  e.  A  ( (
(𝟭 `  O ) `  B ) `  ( F `  k )
)  =  1 ,  1 ,  0 )  =  if ( ran 
F  C_  B , 
1 ,  0 ) )
5712, 18, 563eqtrd 2660 1  |-  ( ph  ->  prod_ k  e.  A  ( ( (𝟭 `  O
) `  B ) `  ( F `  k
) )  =  if ( ran  F  C_  B ,  1 , 
0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ifcif 4086   {cpr 4179    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888   Fincfn 7955   0cc0 9936   1c1 9937   prod_cprod 14635  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-ind 30073
This theorem is referenced by:  hashreprin  30698
  Copyright terms: Public domain W3C validator