Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbst Structured version   Visualization version   Unicode version

Theorem sbgoldbst 41666
Description: If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
sbgoldbst  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  A. m  e. Odd  (
7  <  m  ->  m  e. GoldbachOdd  ) )
Distinct variable group:    m, n

Proof of Theorem sbgoldbst
Dummy variables  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7  |-  ( ( m  e. Odd  /\  7  <  m )  ->  m  e. Odd  )
2 3odd 41617 . . . . . . 7  |-  3  e. Odd
31, 2jctir 561 . . . . . 6  |-  ( ( m  e. Odd  /\  7  <  m )  ->  (
m  e. Odd  /\  3  e. Odd  ) )
4 omoeALTV 41596 . . . . . 6  |-  ( ( m  e. Odd  /\  3  e. Odd  )  ->  ( m  -  3 )  e. Even 
)
5 breq2 4657 . . . . . . . 8  |-  ( n  =  ( m  - 
3 )  ->  (
4  <  n  <->  4  <  ( m  -  3 ) ) )
6 eleq1 2689 . . . . . . . 8  |-  ( n  =  ( m  - 
3 )  ->  (
n  e. GoldbachEven  <->  ( m  - 
3 )  e. GoldbachEven  ) )
75, 6imbi12d 334 . . . . . . 7  |-  ( n  =  ( m  - 
3 )  ->  (
( 4  <  n  ->  n  e. GoldbachEven  )  <->  ( 4  <  ( m  - 
3 )  ->  (
m  -  3 )  e. GoldbachEven  ) ) )
87rspcv 3305 . . . . . 6  |-  ( ( m  -  3 )  e. Even  ->  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  (
4  <  ( m  -  3 )  -> 
( m  -  3 )  e. GoldbachEven  ) ) )
93, 4, 83syl 18 . . . . 5  |-  ( ( m  e. Odd  /\  7  <  m )  ->  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  ( 4  <  ( m  - 
3 )  ->  (
m  -  3 )  e. GoldbachEven  ) ) )
10 4p3e7 11163 . . . . . . . . 9  |-  ( 4  +  3 )  =  7
1110breq1i 4660 . . . . . . . 8  |-  ( ( 4  +  3 )  <  m  <->  7  <  m )
12 4re 11097 . . . . . . . . . . 11  |-  4  e.  RR
1312a1i 11 . . . . . . . . . 10  |-  ( m  e. Odd  ->  4  e.  RR )
14 3re 11094 . . . . . . . . . . 11  |-  3  e.  RR
1514a1i 11 . . . . . . . . . 10  |-  ( m  e. Odd  ->  3  e.  RR )
16 oddz 41544 . . . . . . . . . . 11  |-  ( m  e. Odd  ->  m  e.  ZZ )
1716zred 11482 . . . . . . . . . 10  |-  ( m  e. Odd  ->  m  e.  RR )
1813, 15, 17ltaddsubd 10627 . . . . . . . . 9  |-  ( m  e. Odd  ->  ( ( 4  +  3 )  < 
m  <->  4  <  (
m  -  3 ) ) )
1918biimpd 219 . . . . . . . 8  |-  ( m  e. Odd  ->  ( ( 4  +  3 )  < 
m  ->  4  <  ( m  -  3 ) ) )
2011, 19syl5bir 233 . . . . . . 7  |-  ( m  e. Odd  ->  ( 7  < 
m  ->  4  <  ( m  -  3 ) ) )
2120imp 445 . . . . . 6  |-  ( ( m  e. Odd  /\  7  <  m )  ->  4  <  ( m  -  3 ) )
22 pm2.27 42 . . . . . 6  |-  ( 4  <  ( m  - 
3 )  ->  (
( 4  <  (
m  -  3 )  ->  ( m  - 
3 )  e. GoldbachEven  )  -> 
( m  -  3 )  e. GoldbachEven  ) )
2321, 22syl 17 . . . . 5  |-  ( ( m  e. Odd  /\  7  <  m )  ->  (
( 4  <  (
m  -  3 )  ->  ( m  - 
3 )  e. GoldbachEven  )  -> 
( m  -  3 )  e. GoldbachEven  ) )
24 isgbe 41639 . . . . . 6  |-  ( ( m  -  3 )  e. GoldbachEven 
<->  ( ( m  - 
3 )  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  (
m  -  3 )  =  ( p  +  q ) ) ) )
25 3prm 15406 . . . . . . . . . . . . . 14  |-  3  e.  Prime
2625a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) ) )  ->  3  e.  Prime )
27 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( r  =  3  ->  (
r  e. Odd  <->  3  e. Odd  )
)
28273anbi3d 1405 . . . . . . . . . . . . . . 15  |-  ( r  =  3  ->  (
( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd 
)  <->  ( p  e. Odd  /\  q  e. Odd  /\  3  e. Odd  ) ) )
29 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( r  =  3  ->  (
( p  +  q )  +  r )  =  ( ( p  +  q )  +  3 ) )
3029eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( r  =  3  ->  (
m  =  ( ( p  +  q )  +  r )  <->  m  =  ( ( p  +  q )  +  3 ) ) )
3128, 30anbi12d 747 . . . . . . . . . . . . . 14  |-  ( r  =  3  ->  (
( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd  )  /\  m  =  ( ( p  +  q )  +  r ) )  <->  ( (
p  e. Odd  /\  q  e. Odd  /\  3  e. Odd  )  /\  m  =  (
( p  +  q )  +  3 ) ) ) )
3231adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  /\  q  e.  Prime )  /\  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) ) )  /\  r  =  3 )  -> 
( ( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd  )  /\  m  =  ( (
p  +  q )  +  r ) )  <-> 
( ( p  e. Odd  /\  q  e. Odd  /\  3  e. Odd  )  /\  m  =  ( ( p  +  q )  +  3 ) ) ) )
33 simp1 1061 . . . . . . . . . . . . . . . 16  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  p  e. Odd  )
34 simp2 1062 . . . . . . . . . . . . . . . 16  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  q  e. Odd  )
352a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  3  e. Odd  )
3633, 34, 353jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  ( p  e. Odd  /\  q  e. Odd  /\  3  e. Odd  ) )
3736adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) ) )  ->  (
p  e. Odd  /\  q  e. Odd  /\  3  e. Odd  )
)
3816zcnd 11483 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e. Odd  ->  m  e.  CC )
3938ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  m  e.  CC )
40 3cn 11095 . . . . . . . . . . . . . . . . . . 19  |-  3  e.  CC
4140a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  3  e.  CC )
42 prmz 15389 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  Prime  ->  p  e.  ZZ )
43 prmz 15389 . . . . . . . . . . . . . . . . . . . . 21  |-  ( q  e.  Prime  ->  q  e.  ZZ )
44 zaddcl 11417 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  ZZ  /\  q  e.  ZZ )  ->  ( p  +  q )  e.  ZZ )
4542, 43, 44syl2an 494 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  (
p  +  q )  e.  ZZ )
4645zcnd 11483 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  q  e.  Prime )  ->  (
p  +  q )  e.  CC )
4746adantll 750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( p  +  q )  e.  CC )
4839, 41, 47subadd2d 10411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( ( m  -  3 )  =  ( p  +  q )  <->  ( ( p  +  q )  +  3 )  =  m ) )
4948biimpa 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
m  -  3 )  =  ( p  +  q ) )  -> 
( ( p  +  q )  +  3 )  =  m )
5049eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
m  -  3 )  =  ( p  +  q ) )  ->  m  =  ( (
p  +  q )  +  3 ) )
51503ad2antr3 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) ) )  ->  m  =  ( ( p  +  q )  +  3 ) )
5237, 51jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) ) )  ->  (
( p  e. Odd  /\  q  e. Odd  /\  3  e. Odd 
)  /\  m  =  ( ( p  +  q )  +  3 ) ) )
5326, 32, 52rspcedvd 3317 . . . . . . . . . . . 12  |-  ( ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e. 
Prime )  /\  q  e.  Prime )  /\  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) ) )  ->  E. r  e.  Prime  ( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd  )  /\  m  =  ( (
p  +  q )  +  r ) ) )
5453ex 450 . . . . . . . . . . 11  |-  ( ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  /\  q  e.  Prime )  ->  ( ( p  e. Odd  /\  q  e. Odd  /\  ( m  -  3 )  =  ( p  +  q ) )  ->  E. r  e.  Prime  ( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd 
)  /\  m  =  ( ( p  +  q )  +  r ) ) ) )
5554reximdva 3017 . . . . . . . . . 10  |-  ( ( ( m  e. Odd  /\  7  <  m )  /\  p  e.  Prime )  -> 
( E. q  e. 
Prime  ( p  e. Odd  /\  q  e. Odd  /\  ( m  -  3 )  =  ( p  +  q ) )  ->  E. q  e.  Prime  E. r  e.  Prime  ( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd 
)  /\  m  =  ( ( p  +  q )  +  r ) ) ) )
5655reximdva 3017 . . . . . . . . 9  |-  ( ( m  e. Odd  /\  7  <  m )  ->  ( E. p  e.  Prime  E. q  e.  Prime  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  (
( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd 
)  /\  m  =  ( ( p  +  q )  +  r ) ) ) )
5756, 1jctild 566 . . . . . . . 8  |-  ( ( m  e. Odd  /\  7  <  m )  ->  ( E. p  e.  Prime  E. q  e.  Prime  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  ( m  e. Odd  /\  E. p  e. 
Prime  E. q  e.  Prime  E. r  e.  Prime  (
( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd 
)  /\  m  =  ( ( p  +  q )  +  r ) ) ) ) )
58 isgbo 41641 . . . . . . . 8  |-  ( m  e. GoldbachOdd 
<->  ( m  e. Odd  /\  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  ( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd 
)  /\  m  =  ( ( p  +  q )  +  r ) ) ) )
5957, 58syl6ibr 242 . . . . . . 7  |-  ( ( m  e. Odd  /\  7  <  m )  ->  ( E. p  e.  Prime  E. q  e.  Prime  (
p  e. Odd  /\  q  e. Odd  /\  ( m  - 
3 )  =  ( p  +  q ) )  ->  m  e. GoldbachOdd  ) )
6059adantld 483 . . . . . 6  |-  ( ( m  e. Odd  /\  7  <  m )  ->  (
( ( m  - 
3 )  e. Even  /\  E. p  e.  Prime  E. q  e.  Prime  ( p  e. Odd  /\  q  e. Odd  /\  (
m  -  3 )  =  ( p  +  q ) ) )  ->  m  e. GoldbachOdd  ) )
6124, 60syl5bi 232 . . . . 5  |-  ( ( m  e. Odd  /\  7  <  m )  ->  (
( m  -  3 )  e. GoldbachEven  ->  m  e. GoldbachOdd  ) )
629, 23, 613syld 60 . . . 4  |-  ( ( m  e. Odd  /\  7  <  m )  ->  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  m  e. GoldbachOdd  ) )
6362com12 32 . . 3  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  ( ( m  e. Odd  /\  7  <  m )  ->  m  e. GoldbachOdd  ) )
6463expd 452 . 2  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  ( m  e. Odd 
->  ( 7  <  m  ->  m  e. GoldbachOdd  ) ) )
6564ralrimiv 2965 1  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  A. m  e. Odd  (
7  <  m  ->  m  e. GoldbachOdd  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    < clt 10074    - cmin 10266   3c3 11071   4c4 11072   7c7 11075   ZZcz 11377   Primecprime 15385   Even ceven 41537   Odd codd 41538   GoldbachEven cgbe 41633   GoldbachOdd cgbo 41635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbe 41636  df-gbo 41638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator