MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthfrgr Structured version   Visualization version   Unicode version

Theorem 2pthfrgr 27148
Description: Between any two (different) vertices in a friendship graph, tere is a 2-path (simple path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.)
Hypothesis
Ref Expression
2pthfrgr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
2pthfrgr  |-  ( G  e. FriendGraph  ->  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. f E. p ( f ( a (SPathsOn `  G
) b ) p  /\  ( # `  f
)  =  2 ) )
Distinct variable groups:    G, a,
b, f, p    V, a, b
Allowed substitution hints:    V( f, p)

Proof of Theorem 2pthfrgr
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 2pthfrgr.v . . 3  |-  V  =  (Vtx `  G )
2 eqid 2622 . . 3  |-  (Edg `  G )  =  (Edg
`  G )
31, 22pthfrgrrn2 27147 . 2  |-  ( G  e. FriendGraph  ->  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. m  e.  V  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G ) )  /\  ( a  =/=  m  /\  m  =/=  b
) ) )
4 frgrusgr 27124 . . . . . . . . . . . . 13  |-  ( G  e. FriendGraph  ->  G  e. USGraph  )
5 usgruhgr 26078 . . . . . . . . . . . . 13  |-  ( G  e. USGraph  ->  G  e. UHGraph  )
64, 5syl 17 . . . . . . . . . . . 12  |-  ( G  e. FriendGraph  ->  G  e. UHGraph  )
76adantr 481 . . . . . . . . . . 11  |-  ( ( G  e. FriendGraph  /\  a  e.  V )  ->  G  e. UHGraph  )
87adantr 481 . . . . . . . . . 10  |-  ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  {
a } ) )  ->  G  e. UHGraph  )
98adantr 481 . . . . . . . . 9  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  G  e. UHGraph  )
10 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  a  e.  V )
11 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  m  e.  V )
12 eldifi 3732 . . . . . . . . . . 11  |-  ( b  e.  ( V  \  { a } )  ->  b  e.  V
)
1312ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  b  e.  V )
1410, 11, 133jca 1242 . . . . . . . . 9  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  ( a  e.  V  /\  m  e.  V  /\  b  e.  V
) )
159, 14jca 554 . . . . . . . 8  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  ( G  e. UHGraph  /\  (
a  e.  V  /\  m  e.  V  /\  b  e.  V )
) )
1615adantr 481 . . . . . . 7  |-  ( ( ( ( ( G  e. FriendGraph  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  /\  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) ) )  ->  ( G  e. UHGraph  /\  ( a  e.  V  /\  m  e.  V  /\  b  e.  V ) ) )
17 simprrl 804 . . . . . . 7  |-  ( ( ( ( ( G  e. FriendGraph  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  /\  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) ) )  ->  a  =/=  m )
18 eldifsn 4317 . . . . . . . . 9  |-  ( b  e.  ( V  \  { a } )  <-> 
( b  e.  V  /\  b  =/=  a
) )
19 necom 2847 . . . . . . . . . 10  |-  ( b  =/=  a  <->  a  =/=  b )
2019biimpi 206 . . . . . . . . 9  |-  ( b  =/=  a  ->  a  =/=  b )
2118, 20simplbiim 659 . . . . . . . 8  |-  ( b  e.  ( V  \  { a } )  ->  a  =/=  b
)
2221ad3antlr 767 . . . . . . 7  |-  ( ( ( ( ( G  e. FriendGraph  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  /\  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) ) )  ->  a  =/=  b )
23 simprrr 805 . . . . . . 7  |-  ( ( ( ( ( G  e. FriendGraph  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  /\  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) ) )  ->  m  =/=  b )
24 simprl 794 . . . . . . 7  |-  ( ( ( ( ( G  e. FriendGraph  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  /\  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) ) )  ->  ( {
a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G ) ) )
251, 22pthon3v 26839 . . . . . . 7  |-  ( ( ( G  e. UHGraph  /\  (
a  e.  V  /\  m  e.  V  /\  b  e.  V )
)  /\  ( a  =/=  m  /\  a  =/=  b  /\  m  =/=  b )  /\  ( { a ,  m }  e.  (Edg `  G
)  /\  { m ,  b }  e.  (Edg `  G ) ) )  ->  E. f E. p ( f ( a (SPathsOn `  G
) b ) p  /\  ( # `  f
)  =  2 ) )
2616, 17, 22, 23, 24, 25syl131anc 1339 . . . . . 6  |-  ( ( ( ( ( G  e. FriendGraph  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  /\  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) ) )  ->  E. f E. p ( f ( a (SPathsOn `  G
) b ) p  /\  ( # `  f
)  =  2 ) )
2726ex 450 . . . . 5  |-  ( ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  { a } ) )  /\  m  e.  V )  ->  ( ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G ) )  /\  ( a  =/=  m  /\  m  =/=  b
) )  ->  E. f E. p ( f ( a (SPathsOn `  G
) b ) p  /\  ( # `  f
)  =  2 ) ) )
2827rexlimdva 3031 . . . 4  |-  ( ( ( G  e. FriendGraph  /\  a  e.  V )  /\  b  e.  ( V  \  {
a } ) )  ->  ( E. m  e.  V  ( ( { a ,  m }  e.  (Edg `  G
)  /\  { m ,  b }  e.  (Edg `  G ) )  /\  ( a  =/=  m  /\  m  =/=  b ) )  ->  E. f E. p ( f ( a (SPathsOn `  G ) b ) p  /\  ( # `  f )  =  2 ) ) )
2928ralimdva 2962 . . 3  |-  ( ( G  e. FriendGraph  /\  a  e.  V )  ->  ( A. b  e.  ( V  \  { a } ) E. m  e.  V  ( ( { a ,  m }  e.  (Edg `  G )  /\  { m ,  b }  e.  (Edg `  G ) )  /\  ( a  =/=  m  /\  m  =/=  b
) )  ->  A. b  e.  ( V  \  {
a } ) E. f E. p ( f ( a (SPathsOn `  G ) b ) p  /\  ( # `  f )  =  2 ) ) )
3029ralimdva 2962 . 2  |-  ( G  e. FriendGraph  ->  ( A. a  e.  V  A. b  e.  ( V  \  {
a } ) E. m  e.  V  ( ( { a ,  m }  e.  (Edg
`  G )  /\  { m ,  b }  e.  (Edg `  G
) )  /\  (
a  =/=  m  /\  m  =/=  b ) )  ->  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. f E. p ( f ( a (SPathsOn `  G
) b ) p  /\  ( # `  f
)  =  2 ) ) )
313, 30mpd 15 1  |-  ( G  e. FriendGraph  ->  A. a  e.  V  A. b  e.  ( V  \  { a } ) E. f E. p ( f ( a (SPathsOn `  G
) b ) p  /\  ( # `  f
)  =  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571   {csn 4177   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   2c2 11070   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   UHGraph cuhgr 25951   USGraph cusgr 26044  SPathsOncspthson 26611   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615  df-frgr 27121
This theorem is referenced by:  frgrconngr  27158
  Copyright terms: Public domain W3C validator