MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splfv2a Structured version   Visualization version   Unicode version

Theorem splfv2a 13507
Description: Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
spllen.s  |-  ( ph  ->  S  e. Word  A )
spllen.f  |-  ( ph  ->  F  e.  ( 0 ... T ) )
spllen.t  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
spllen.r  |-  ( ph  ->  R  e. Word  A )
splfv2a.x  |-  ( ph  ->  X  e.  ( 0..^ ( # `  R
) ) )
Assertion
Ref Expression
splfv2a  |-  ( ph  ->  ( ( S splice  <. F ,  T ,  R >. ) `
 ( F  +  X ) )  =  ( R `  X
) )

Proof of Theorem splfv2a
StepHypRef Expression
1 spllen.s . . . 4  |-  ( ph  ->  S  e. Word  A )
2 spllen.f . . . 4  |-  ( ph  ->  F  e.  ( 0 ... T ) )
3 spllen.t . . . 4  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
4 spllen.r . . . 4  |-  ( ph  ->  R  e. Word  A )
5 splval 13502 . . . 4  |-  ( ( S  e. Word  A  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  R  e. Word  A ) )  -> 
( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  (
# `  S ) >. ) ) )
61, 2, 3, 4, 5syl13anc 1328 . . 3  |-  ( ph  ->  ( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  (
# `  S ) >. ) ) )
7 elfznn0 12433 . . . . . . 7  |-  ( F  e.  ( 0 ... T )  ->  F  e.  NN0 )
82, 7syl 17 . . . . . 6  |-  ( ph  ->  F  e.  NN0 )
98nn0cnd 11353 . . . . 5  |-  ( ph  ->  F  e.  CC )
10 splfv2a.x . . . . . . 7  |-  ( ph  ->  X  e.  ( 0..^ ( # `  R
) ) )
11 elfzoelz 12470 . . . . . . 7  |-  ( X  e.  ( 0..^ (
# `  R )
)  ->  X  e.  ZZ )
1210, 11syl 17 . . . . . 6  |-  ( ph  ->  X  e.  ZZ )
1312zcnd 11483 . . . . 5  |-  ( ph  ->  X  e.  CC )
149, 13addcomd 10238 . . . 4  |-  ( ph  ->  ( F  +  X
)  =  ( X  +  F ) )
15 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
168, 15syl6eleq 2711 . . . . . . . 8  |-  ( ph  ->  F  e.  ( ZZ>= ` 
0 ) )
17 eluzfz1 12348 . . . . . . . 8  |-  ( F  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... F
) )
1816, 17syl 17 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0 ... F ) )
19 elfzuz3 12339 . . . . . . . . . 10  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ( ZZ>= `  T )
)
203, 19syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= `  T ) )
21 elfzuz3 12339 . . . . . . . . . 10  |-  ( F  e.  ( 0 ... T )  ->  T  e.  ( ZZ>= `  F )
)
222, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  T  e.  ( ZZ>= `  F ) )
23 uztrn 11704 . . . . . . . . 9  |-  ( ( ( # `  S
)  e.  ( ZZ>= `  T )  /\  T  e.  ( ZZ>= `  F )
)  ->  ( # `  S
)  e.  ( ZZ>= `  F ) )
2420, 22, 23syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= `  F ) )
25 elfzuzb 12336 . . . . . . . 8  |-  ( F  e.  ( 0 ... ( # `  S
) )  <->  ( F  e.  ( ZZ>= `  0 )  /\  ( # `  S
)  e.  ( ZZ>= `  F ) ) )
2616, 24, 25sylanbrc 698 . . . . . . 7  |-  ( ph  ->  F  e.  ( 0 ... ( # `  S
) ) )
27 swrdlen 13423 . . . . . . 7  |-  ( ( S  e. Word  A  /\  0  e.  ( 0 ... F )  /\  F  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. 0 ,  F >. ) )  =  ( F  -  0 ) )
281, 18, 26, 27syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( # `  ( S substr  <. 0 ,  F >. ) )  =  ( F  -  0 ) )
299subid1d 10381 . . . . . 6  |-  ( ph  ->  ( F  -  0 )  =  F )
3028, 29eqtrd 2656 . . . . 5  |-  ( ph  ->  ( # `  ( S substr  <. 0 ,  F >. ) )  =  F )
3130oveq2d 6666 . . . 4  |-  ( ph  ->  ( X  +  (
# `  ( S substr  <.
0 ,  F >. ) ) )  =  ( X  +  F ) )
3214, 31eqtr4d 2659 . . 3  |-  ( ph  ->  ( F  +  X
)  =  ( X  +  ( # `  ( S substr  <. 0 ,  F >. ) ) ) )
336, 32fveq12d 6197 . 2  |-  ( ph  ->  ( ( S splice  <. F ,  T ,  R >. ) `
 ( F  +  X ) )  =  ( ( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  (
# `  S ) >. ) ) `  ( X  +  ( # `  ( S substr  <. 0 ,  F >. ) ) ) ) )
34 swrdcl 13419 . . . . 5  |-  ( S  e. Word  A  ->  ( S substr  <. 0 ,  F >. )  e. Word  A )
351, 34syl 17 . . . 4  |-  ( ph  ->  ( S substr  <. 0 ,  F >. )  e. Word  A
)
36 ccatcl 13359 . . . 4  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A )  ->  ( ( S substr  <. 0 ,  F >. ) ++  R )  e. Word  A
)
3735, 4, 36syl2anc 693 . . 3  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) ++  R )  e. Word  A )
38 swrdcl 13419 . . . 4  |-  ( S  e. Word  A  ->  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  A )
391, 38syl 17 . . 3  |-  ( ph  ->  ( S substr  <. T , 
( # `  S )
>. )  e. Word  A )
40 0nn0 11307 . . . . . . . 8  |-  0  e.  NN0
41 nn0addcl 11328 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  F  e.  NN0 )  -> 
( 0  +  F
)  e.  NN0 )
4240, 8, 41sylancr 695 . . . . . . 7  |-  ( ph  ->  ( 0  +  F
)  e.  NN0 )
43 fzoss1 12495 . . . . . . . 8  |-  ( ( 0  +  F )  e.  ( ZZ>= `  0
)  ->  ( (
0  +  F )..^ ( ( # `  R
)  +  F ) )  C_  ( 0..^ ( ( # `  R
)  +  F ) ) )
4443, 15eleq2s 2719 . . . . . . 7  |-  ( ( 0  +  F )  e.  NN0  ->  ( ( 0  +  F )..^ ( ( # `  R
)  +  F ) )  C_  ( 0..^ ( ( # `  R
)  +  F ) ) )
4542, 44syl 17 . . . . . 6  |-  ( ph  ->  ( ( 0  +  F )..^ ( (
# `  R )  +  F ) )  C_  ( 0..^ ( ( # `  R )  +  F
) ) )
46 ccatlen 13360 . . . . . . . . 9  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A )  ->  ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  =  ( (
# `  ( S substr  <.
0 ,  F >. ) )  +  ( # `  R ) ) )
4735, 4, 46syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  =  ( (
# `  ( S substr  <.
0 ,  F >. ) )  +  ( # `  R ) ) )
4830oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( # `  ( S substr  <. 0 ,  F >. ) )  +  (
# `  R )
)  =  ( F  +  ( # `  R
) ) )
49 wrdfin 13323 . . . . . . . . . . . 12  |-  ( R  e. Word  A  ->  R  e.  Fin )
504, 49syl 17 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  Fin )
51 hashcl 13147 . . . . . . . . . . 11  |-  ( R  e.  Fin  ->  ( # `
 R )  e. 
NN0 )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( # `  R
)  e.  NN0 )
5352nn0cnd 11353 . . . . . . . . 9  |-  ( ph  ->  ( # `  R
)  e.  CC )
549, 53addcomd 10238 . . . . . . . 8  |-  ( ph  ->  ( F  +  (
# `  R )
)  =  ( (
# `  R )  +  F ) )
5547, 48, 543eqtrd 2660 . . . . . . 7  |-  ( ph  ->  ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  =  ( (
# `  R )  +  F ) )
5655oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( 0..^ ( # `  ( ( S substr  <. 0 ,  F >. ) ++  R ) ) )  =  ( 0..^ ( ( # `  R )  +  F
) ) )
5745, 56sseqtr4d 3642 . . . . 5  |-  ( ph  ->  ( ( 0  +  F )..^ ( (
# `  R )  +  F ) )  C_  ( 0..^ ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) ) ) )
588nn0zd 11480 . . . . . 6  |-  ( ph  ->  F  e.  ZZ )
59 fzoaddel 12520 . . . . . 6  |-  ( ( X  e.  ( 0..^ ( # `  R
) )  /\  F  e.  ZZ )  ->  ( X  +  F )  e.  ( ( 0  +  F )..^ ( (
# `  R )  +  F ) ) )
6010, 58, 59syl2anc 693 . . . . 5  |-  ( ph  ->  ( X  +  F
)  e.  ( ( 0  +  F )..^ ( ( # `  R
)  +  F ) ) )
6157, 60sseldd 3604 . . . 4  |-  ( ph  ->  ( X  +  F
)  e.  ( 0..^ ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) ) ) )
6231, 61eqeltrd 2701 . . 3  |-  ( ph  ->  ( X  +  (
# `  ( S substr  <.
0 ,  F >. ) ) )  e.  ( 0..^ ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) ) ) )
63 ccatval1 13361 . . 3  |-  ( ( ( ( S substr  <. 0 ,  F >. ) ++  R )  e. Word  A  /\  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  A  /\  ( X  +  ( # `
 ( S substr  <. 0 ,  F >. ) ) )  e.  ( 0..^ (
# `  ( ( S substr  <. 0 ,  F >. ) ++  R ) ) ) )  ->  (
( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  ( # `  S ) >. )
) `  ( X  +  ( # `  ( S substr  <. 0 ,  F >. ) ) ) )  =  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) `  ( X  +  ( # `
 ( S substr  <. 0 ,  F >. ) ) ) ) )
6437, 39, 62, 63syl3anc 1326 . 2  |-  ( ph  ->  ( ( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  (
# `  S ) >. ) ) `  ( X  +  ( # `  ( S substr  <. 0 ,  F >. ) ) ) )  =  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) `  ( X  +  ( # `
 ( S substr  <. 0 ,  F >. ) ) ) ) )
65 ccatval3 13363 . . 3  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A  /\  X  e.  ( 0..^ ( # `  R
) ) )  -> 
( ( ( S substr  <. 0 ,  F >. ) ++  R ) `  ( X  +  ( # `  ( S substr  <. 0 ,  F >. ) ) ) )  =  ( R `  X ) )
6635, 4, 10, 65syl3anc 1326 . 2  |-  ( ph  ->  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) `  ( X  +  ( # `  ( S substr  <. 0 ,  F >. ) ) ) )  =  ( R `  X ) )
6733, 64, 663eqtrd 2660 1  |-  ( ph  ->  ( ( S splice  <. F ,  T ,  R >. ) `
 ( F  +  X ) )  =  ( R `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574   <.cop 4183   <.cotp 4185   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   splice csplice 13296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-splice 13304
This theorem is referenced by:  psgnunilem2  17915
  Copyright terms: Public domain W3C validator