Proof of Theorem stgoldbwt
Step | Hyp | Ref
| Expression |
1 | | pm3.35 611 |
. . . . . 6
  
GoldbachOdd 
GoldbachOdd  |
2 | | gbogbow 41644 |
. . . . . . 7
 GoldbachOdd GoldbachOddW  |
3 | 2 | a1d 25 |
. . . . . 6
 GoldbachOdd 
GoldbachOddW   |
4 | 1, 3 | syl 17 |
. . . . 5
  
GoldbachOdd  
GoldbachOddW   |
5 | 4 | ex 450 |
. . . 4
  
GoldbachOdd 
GoldbachOddW    |
6 | 5 | a1d 25 |
. . 3
  Odd
 
GoldbachOdd 
GoldbachOddW     |
7 | | oddz 41544 |
. . . . . . . 8
 Odd   |
8 | 7 | zred 11482 |
. . . . . . 7
 Odd   |
9 | | 7re 11103 |
. . . . . . . 8
 |
10 | 9 | a1i 11 |
. . . . . . 7
 Odd   |
11 | 8, 10 | lenltd 10183 |
. . . . . 6
 Odd 
   |
12 | 8, 10 | leloed 10180 |
. . . . . . . 8
 Odd       |
13 | 7 | adantr 481 |
. . . . . . . . . . . . . . . 16
  Odd    |
14 | | 6nn 11189 |
. . . . . . . . . . . . . . . . 17
 |
15 | 14 | nnzi 11401 |
. . . . . . . . . . . . . . . 16
 |
16 | 13, 15 | jctir 561 |
. . . . . . . . . . . . . . 15
  Odd  
   |
17 | 16 | adantl 482 |
. . . . . . . . . . . . . 14
   Odd       |
18 | | df-7 11084 |
. . . . . . . . . . . . . . . . 17
   |
19 | 18 | breq2i 4661 |
. . . . . . . . . . . . . . . 16

    |
20 | 19 | biimpi 206 |
. . . . . . . . . . . . . . 15
     |
21 | | df-6 11083 |
. . . . . . . . . . . . . . . 16
   |
22 | | 5nn 11188 |
. . . . . . . . . . . . . . . . . . 19
 |
23 | 22 | nnzi 11401 |
. . . . . . . . . . . . . . . . . 18
 |
24 | | zltp1le 11427 |
. . . . . . . . . . . . . . . . . 18
 
       |
25 | 23, 7, 24 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
 Odd       |
26 | 25 | biimpa 501 |
. . . . . . . . . . . . . . . 16
  Odd      |
27 | 21, 26 | syl5eqbr 4688 |
. . . . . . . . . . . . . . 15
  Odd    |
28 | 20, 27 | anim12ci 591 |
. . . . . . . . . . . . . 14
   Odd         |
29 | | zgeltp1eq 41318 |
. . . . . . . . . . . . . 14
 
     
   |
30 | 17, 28, 29 | sylc 65 |
. . . . . . . . . . . . 13
   Odd     |
31 | 30 | orcd 407 |
. . . . . . . . . . . 12
   Odd       |
32 | 31 | ex 450 |
. . . . . . . . . . 11
   Odd       |
33 | | olc 399 |
. . . . . . . . . . . 12
     |
34 | 33 | a1d 25 |
. . . . . . . . . . 11
   Odd       |
35 | 32, 34 | jaoi 394 |
. . . . . . . . . 10
     Odd

     |
36 | 35 | expd 452 |
. . . . . . . . 9
    Odd        |
37 | 36 | com12 32 |
. . . . . . . 8
 Odd           |
38 | 12, 37 | sylbid 230 |
. . . . . . 7
 Odd 
       |
39 | | eleq1 2689 |
. . . . . . . . . 10
  Odd
Odd   |
40 | | 6even 41620 |
. . . . . . . . . . 11
Even |
41 | | evennodd 41556 |
. . . . . . . . . . . 12
 Even
Odd  |
42 | 41 | pm2.21d 118 |
. . . . . . . . . . 11
 Even  Odd
GoldbachOddW   |
43 | 40, 42 | mp1i 13 |
. . . . . . . . . 10
  Odd
GoldbachOddW   |
44 | 39, 43 | sylbid 230 |
. . . . . . . . 9
  Odd
GoldbachOddW   |
45 | | 7gbow 41660 |
. . . . . . . . . . 11
GoldbachOddW |
46 | | eleq1 2689 |
. . . . . . . . . . 11
 
GoldbachOddW GoldbachOddW   |
47 | 45, 46 | mpbiri 248 |
. . . . . . . . . 10
 GoldbachOddW  |
48 | 47 | a1d 25 |
. . . . . . . . 9
  Odd
GoldbachOddW   |
49 | 44, 48 | jaoi 394 |
. . . . . . . 8
    Odd
GoldbachOddW   |
50 | 49 | com12 32 |
. . . . . . 7
 Odd   
GoldbachOddW   |
51 | 38, 50 | syl6d 75 |
. . . . . 6
 Odd 
 GoldbachOddW    |
52 | 11, 51 | sylbird 250 |
. . . . 5
 Odd 
 GoldbachOddW    |
53 | 52 | com12 32 |
. . . 4
  Odd 
GoldbachOddW    |
54 | 53 | a1dd 50 |
. . 3
  Odd  
GoldbachOdd 
GoldbachOddW     |
55 | 6, 54 | pm2.61i 176 |
. 2
 Odd   GoldbachOdd
 GoldbachOddW    |
56 | 55 | ralimia 2950 |
1
 
Odd 
GoldbachOdd  Odd 
GoldbachOddW   |