Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stgoldbwt Structured version   Visualization version   Unicode version

Theorem stgoldbwt 41664
Description: If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.)
Assertion
Ref Expression
stgoldbwt  |-  ( A. n  e. Odd  ( 7  <  n  ->  n  e. GoldbachOdd  )  ->  A. n  e. Odd  (
5  <  n  ->  n  e. GoldbachOddW  ) )

Proof of Theorem stgoldbwt
StepHypRef Expression
1 pm3.35 611 . . . . . 6  |-  ( ( 7  <  n  /\  ( 7  <  n  ->  n  e. GoldbachOdd  ) )  ->  n  e. GoldbachOdd  )
2 gbogbow 41644 . . . . . . 7  |-  ( n  e. GoldbachOdd  ->  n  e. GoldbachOddW  )
32a1d 25 . . . . . 6  |-  ( n  e. GoldbachOdd  ->  ( 5  < 
n  ->  n  e. GoldbachOddW  ) )
41, 3syl 17 . . . . 5  |-  ( ( 7  <  n  /\  ( 7  <  n  ->  n  e. GoldbachOdd  ) )  -> 
( 5  <  n  ->  n  e. GoldbachOddW  ) )
54ex 450 . . . 4  |-  ( 7  <  n  ->  (
( 7  <  n  ->  n  e. GoldbachOdd  )  ->  (
5  <  n  ->  n  e. GoldbachOddW  ) ) )
65a1d 25 . . 3  |-  ( 7  <  n  ->  (
n  e. Odd  ->  ( ( 7  <  n  ->  n  e. GoldbachOdd  )  ->  (
5  <  n  ->  n  e. GoldbachOddW  ) ) ) )
7 oddz 41544 . . . . . . . 8  |-  ( n  e. Odd  ->  n  e.  ZZ )
87zred 11482 . . . . . . 7  |-  ( n  e. Odd  ->  n  e.  RR )
9 7re 11103 . . . . . . . 8  |-  7  e.  RR
109a1i 11 . . . . . . 7  |-  ( n  e. Odd  ->  7  e.  RR )
118, 10lenltd 10183 . . . . . 6  |-  ( n  e. Odd  ->  ( n  <_ 
7  <->  -.  7  <  n ) )
128, 10leloed 10180 . . . . . . . 8  |-  ( n  e. Odd  ->  ( n  <_ 
7  <->  ( n  <  7  \/  n  =  7 ) ) )
137adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( n  e. Odd  /\  5  <  n )  ->  n  e.  ZZ )
14 6nn 11189 . . . . . . . . . . . . . . . . 17  |-  6  e.  NN
1514nnzi 11401 . . . . . . . . . . . . . . . 16  |-  6  e.  ZZ
1613, 15jctir 561 . . . . . . . . . . . . . . 15  |-  ( ( n  e. Odd  /\  5  <  n )  ->  (
n  e.  ZZ  /\  6  e.  ZZ )
)
1716adantl 482 . . . . . . . . . . . . . 14  |-  ( ( n  <  7  /\  ( n  e. Odd  /\  5  <  n ) )  ->  ( n  e.  ZZ  /\  6  e.  ZZ ) )
18 df-7 11084 . . . . . . . . . . . . . . . . 17  |-  7  =  ( 6  +  1 )
1918breq2i 4661 . . . . . . . . . . . . . . . 16  |-  ( n  <  7  <->  n  <  ( 6  +  1 ) )
2019biimpi 206 . . . . . . . . . . . . . . 15  |-  ( n  <  7  ->  n  <  ( 6  +  1 ) )
21 df-6 11083 . . . . . . . . . . . . . . . 16  |-  6  =  ( 5  +  1 )
22 5nn 11188 . . . . . . . . . . . . . . . . . . 19  |-  5  e.  NN
2322nnzi 11401 . . . . . . . . . . . . . . . . . 18  |-  5  e.  ZZ
24 zltp1le 11427 . . . . . . . . . . . . . . . . . 18  |-  ( ( 5  e.  ZZ  /\  n  e.  ZZ )  ->  ( 5  <  n  <->  ( 5  +  1 )  <_  n ) )
2523, 7, 24sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( n  e. Odd  ->  ( 5  < 
n  <->  ( 5  +  1 )  <_  n
) )
2625biimpa 501 . . . . . . . . . . . . . . . 16  |-  ( ( n  e. Odd  /\  5  <  n )  ->  (
5  +  1 )  <_  n )
2721, 26syl5eqbr 4688 . . . . . . . . . . . . . . 15  |-  ( ( n  e. Odd  /\  5  <  n )  ->  6  <_  n )
2820, 27anim12ci 591 . . . . . . . . . . . . . 14  |-  ( ( n  <  7  /\  ( n  e. Odd  /\  5  <  n ) )  ->  ( 6  <_  n  /\  n  <  (
6  +  1 ) ) )
29 zgeltp1eq 41318 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ZZ  /\  6  e.  ZZ )  ->  ( ( 6  <_  n  /\  n  <  (
6  +  1 ) )  ->  n  = 
6 ) )
3017, 28, 29sylc 65 . . . . . . . . . . . . 13  |-  ( ( n  <  7  /\  ( n  e. Odd  /\  5  <  n ) )  ->  n  =  6 )
3130orcd 407 . . . . . . . . . . . 12  |-  ( ( n  <  7  /\  ( n  e. Odd  /\  5  <  n ) )  ->  ( n  =  6  \/  n  =  7 ) )
3231ex 450 . . . . . . . . . . 11  |-  ( n  <  7  ->  (
( n  e. Odd  /\  5  <  n )  -> 
( n  =  6  \/  n  =  7 ) ) )
33 olc 399 . . . . . . . . . . . 12  |-  ( n  =  7  ->  (
n  =  6  \/  n  =  7 ) )
3433a1d 25 . . . . . . . . . . 11  |-  ( n  =  7  ->  (
( n  e. Odd  /\  5  <  n )  -> 
( n  =  6  \/  n  =  7 ) ) )
3532, 34jaoi 394 . . . . . . . . . 10  |-  ( ( n  <  7  \/  n  =  7 )  ->  ( ( n  e. Odd  /\  5  <  n )  ->  ( n  =  6  \/  n  =  7 ) ) )
3635expd 452 . . . . . . . . 9  |-  ( ( n  <  7  \/  n  =  7 )  ->  ( n  e. Odd 
->  ( 5  <  n  ->  ( n  =  6  \/  n  =  7 ) ) ) )
3736com12 32 . . . . . . . 8  |-  ( n  e. Odd  ->  ( ( n  <  7  \/  n  =  7 )  -> 
( 5  <  n  ->  ( n  =  6  \/  n  =  7 ) ) ) )
3812, 37sylbid 230 . . . . . . 7  |-  ( n  e. Odd  ->  ( n  <_ 
7  ->  ( 5  <  n  ->  (
n  =  6  \/  n  =  7 ) ) ) )
39 eleq1 2689 . . . . . . . . . 10  |-  ( n  =  6  ->  (
n  e. Odd  <->  6  e. Odd  )
)
40 6even 41620 . . . . . . . . . . 11  |-  6  e. Even
41 evennodd 41556 . . . . . . . . . . . 12  |-  ( 6  e. Even  ->  -.  6  e. Odd  )
4241pm2.21d 118 . . . . . . . . . . 11  |-  ( 6  e. Even  ->  ( 6  e. Odd 
->  n  e. GoldbachOddW  ) )
4340, 42mp1i 13 . . . . . . . . . 10  |-  ( n  =  6  ->  (
6  e. Odd  ->  n  e. GoldbachOddW  ) )
4439, 43sylbid 230 . . . . . . . . 9  |-  ( n  =  6  ->  (
n  e. Odd  ->  n  e. GoldbachOddW  ) )
45 7gbow 41660 . . . . . . . . . . 11  |-  7  e. GoldbachOddW
46 eleq1 2689 . . . . . . . . . . 11  |-  ( n  =  7  ->  (
n  e. GoldbachOddW  <->  7  e. GoldbachOddW  ) )
4745, 46mpbiri 248 . . . . . . . . . 10  |-  ( n  =  7  ->  n  e. GoldbachOddW  )
4847a1d 25 . . . . . . . . 9  |-  ( n  =  7  ->  (
n  e. Odd  ->  n  e. GoldbachOddW  ) )
4944, 48jaoi 394 . . . . . . . 8  |-  ( ( n  =  6  \/  n  =  7 )  ->  ( n  e. Odd 
->  n  e. GoldbachOddW  ) )
5049com12 32 . . . . . . 7  |-  ( n  e. Odd  ->  ( ( n  =  6  \/  n  =  7 )  ->  n  e. GoldbachOddW  ) )
5138, 50syl6d 75 . . . . . 6  |-  ( n  e. Odd  ->  ( n  <_ 
7  ->  ( 5  <  n  ->  n  e. GoldbachOddW  ) ) )
5211, 51sylbird 250 . . . . 5  |-  ( n  e. Odd  ->  ( -.  7  <  n  ->  ( 5  <  n  ->  n  e. GoldbachOddW  ) ) )
5352com12 32 . . . 4  |-  ( -.  7  <  n  -> 
( n  e. Odd  ->  ( 5  <  n  ->  n  e. GoldbachOddW  ) ) )
5453a1dd 50 . . 3  |-  ( -.  7  <  n  -> 
( n  e. Odd  ->  ( ( 7  <  n  ->  n  e. GoldbachOdd  )  ->  (
5  <  n  ->  n  e. GoldbachOddW  ) ) ) )
556, 54pm2.61i 176 . 2  |-  ( n  e. Odd  ->  ( ( 7  <  n  ->  n  e. GoldbachOdd  )  ->  ( 5  <  n  ->  n  e. GoldbachOddW  ) ) )
5655ralimia 2950 1  |-  ( A. n  e. Odd  ( 7  <  n  ->  n  e. GoldbachOdd  )  ->  A. n  e. Odd  (
5  <  n  ->  n  e. GoldbachOddW  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   5c5 11073   6c6 11074   7c7 11075   ZZcz 11377   Even ceven 41537   Odd codd 41538   GoldbachOddW cgbow 41634   GoldbachOdd cgbo 41635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbow 41637  df-gbo 41638
This theorem is referenced by:  stgoldbnnsum4prm  41691
  Copyright terms: Public domain W3C validator