MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsdsval Structured version   Visualization version   Unicode version

Theorem xpsdsval 22186
Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t  |-  T  =  ( R  X.s  S )
xpsds.x  |-  X  =  ( Base `  R
)
xpsds.y  |-  Y  =  ( Base `  S
)
xpsds.1  |-  ( ph  ->  R  e.  V )
xpsds.2  |-  ( ph  ->  S  e.  W )
xpsds.p  |-  P  =  ( dist `  T
)
xpsds.m  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
xpsds.n  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
xpsds.3  |-  ( ph  ->  M  e.  ( *Met `  X ) )
xpsds.4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
xpsds.a  |-  ( ph  ->  A  e.  X )
xpsds.b  |-  ( ph  ->  B  e.  Y )
xpsds.c  |-  ( ph  ->  C  e.  X )
xpsds.d  |-  ( ph  ->  D  e.  Y )
Assertion
Ref Expression
xpsdsval  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )

Proof of Theorem xpsdsval
Dummy variables  x  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . . . 5  |-  T  =  ( R  X.s  S )
2 xpsds.x . . . . 5  |-  X  =  ( Base `  R
)
3 xpsds.y . . . . 5  |-  Y  =  ( Base `  S
)
4 xpsds.1 . . . . 5  |-  ( ph  ->  R  e.  V )
5 xpsds.2 . . . . 5  |-  ( ph  ->  S  e.  W )
6 eqid 2622 . . . . 5  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
7 eqid 2622 . . . . 5  |-  (Scalar `  R )  =  (Scalar `  R )
8 eqid 2622 . . . . 5  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) )
91, 2, 3, 4, 5, 6, 7, 8xpsval 16232 . . . 4  |-  ( ph  ->  T  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  "s  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8xpslem 16233 . . . 4  |-  ( ph  ->  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) )
116xpsff1o2 16231 . . . . 5  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
12 f1ocnv 6149 . . . . 5  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  `' (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y
) )
1311, 12mp1i 13 . . . 4  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y ) )
14 ovexd 6680 . . . 4  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  e.  _V )
15 eqid 2622 . . . 4  |-  ( (
dist `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  =  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
16 xpsds.p . . . 4  |-  P  =  ( dist `  T
)
17 xpsds.m . . . . . 6  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
18 xpsds.n . . . . . 6  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
19 xpsds.3 . . . . . 6  |-  ( ph  ->  M  e.  ( *Met `  X ) )
20 xpsds.4 . . . . . 6  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
211, 2, 3, 4, 5, 16, 17, 18, 19, 20xpsxmetlem 22184 . . . . 5  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( *Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
22 ssid 3624 . . . . 5  |-  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
23 xmetres2 22166 . . . . 5  |-  ( ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( *Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  /\  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  -> 
( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( *Met ` 
ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) ) )
2421, 22, 23sylancl 694 . . . 4  |-  ( ph  ->  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( *Met ` 
ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) ) )
25 df-ov 6653 . . . . . 6  |-  ( A ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) B )  =  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. A ,  B >. )
26 xpsds.a . . . . . . 7  |-  ( ph  ->  A  e.  X )
27 xpsds.b . . . . . . 7  |-  ( ph  ->  B  e.  Y )
286xpsfval 16227 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) B )  =  `' ( { A }  +c  { B } ) )
2926, 27, 28syl2anc 693 . . . . . 6  |-  ( ph  ->  ( A ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) B )  =  `' ( { A }  +c  { B } ) )
3025, 29syl5eqr 2670 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. A ,  B >. )  =  `' ( { A }  +c  { B } ) )
31 opelxpi 5148 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y )  -> 
<. A ,  B >.  e.  ( X  X.  Y
) )
3226, 27, 31syl2anc 693 . . . . . 6  |-  ( ph  -> 
<. A ,  B >.  e.  ( X  X.  Y
) )
33 f1of 6137 . . . . . . . 8  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ( X  X.  Y ) --> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
3411, 33ax-mp 5 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) --> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )
3534ffvelrni 6358 . . . . . 6  |-  ( <. A ,  B >.  e.  ( X  X.  Y
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. A ,  B >. )  e.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
3632, 35syl 17 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. A ,  B >. )  e.  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
3730, 36eqeltrrd 2702 . . . 4  |-  ( ph  ->  `' ( { A }  +c  { B }
)  e.  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
38 df-ov 6653 . . . . . 6  |-  ( C ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) D )  =  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. C ,  D >. )
39 xpsds.c . . . . . . 7  |-  ( ph  ->  C  e.  X )
40 xpsds.d . . . . . . 7  |-  ( ph  ->  D  e.  Y )
416xpsfval 16227 . . . . . . 7  |-  ( ( C  e.  X  /\  D  e.  Y )  ->  ( C ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) D )  =  `' ( { C }  +c  { D } ) )
4239, 40, 41syl2anc 693 . . . . . 6  |-  ( ph  ->  ( C ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) D )  =  `' ( { C }  +c  { D } ) )
4338, 42syl5eqr 2670 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. C ,  D >. )  =  `' ( { C }  +c  { D } ) )
44 opelxpi 5148 . . . . . . 7  |-  ( ( C  e.  X  /\  D  e.  Y )  -> 
<. C ,  D >.  e.  ( X  X.  Y
) )
4539, 40, 44syl2anc 693 . . . . . 6  |-  ( ph  -> 
<. C ,  D >.  e.  ( X  X.  Y
) )
4634ffvelrni 6358 . . . . . 6  |-  ( <. C ,  D >.  e.  ( X  X.  Y
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. C ,  D >. )  e.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
4745, 46syl 17 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) `
 <. C ,  D >. )  e.  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
4843, 47eqeltrrd 2702 . . . 4  |-  ( ph  ->  `' ( { C }  +c  { D }
)  e.  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
499, 10, 13, 14, 15, 16, 24, 37, 48imasdsf1o 22179 . . 3  |-  ( ph  ->  ( ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { A }  +c  { B } ) ) P ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { C }  +c  { D } ) ) )  =  ( `' ( { A }  +c  { B } ) ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) ) `' ( { C }  +c  { D }
) ) )
5037, 48ovresd 6801 . . 3  |-  ( ph  ->  ( `' ( { A }  +c  { B } ) ( (
dist `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) ) `' ( { C }  +c  { D } ) )  =  ( `' ( { A }  +c  { B } ) (
dist `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) ) `' ( { C }  +c  { D } ) ) )
5149, 50eqtrd 2656 . 2  |-  ( ph  ->  ( ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { A }  +c  { B } ) ) P ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { C }  +c  { D } ) ) )  =  ( `' ( { A }  +c  { B } ) ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) `' ( { C }  +c  { D } ) ) )
52 f1ocnvfv 6534 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  /\  <. A ,  B >.  e.  ( X  X.  Y ) )  ->  ( (
( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. A ,  B >. )  =  `' ( { A }  +c  { B }
)  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { A }  +c  { B } ) )  =  <. A ,  B >. ) )
5311, 32, 52sylancr 695 . . . 4  |-  ( ph  ->  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. A ,  B >. )  =  `' ( { A }  +c  { B } )  -> 
( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { A }  +c  { B } ) )  = 
<. A ,  B >. ) )
5430, 53mpd 15 . . 3  |-  ( ph  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { A }  +c  { B } ) )  = 
<. A ,  B >. )
55 f1ocnvfv 6534 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  /\  <. C ,  D >.  e.  ( X  X.  Y ) )  ->  ( (
( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  <. C ,  D >. )  =  `' ( { C }  +c  { D }
)  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { C }  +c  { D } ) )  =  <. C ,  D >. ) )
5611, 45, 55sylancr 695 . . . 4  |-  ( ph  ->  ( ( ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 <. C ,  D >. )  =  `' ( { C }  +c  { D } )  -> 
( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { C }  +c  { D } ) )  = 
<. C ,  D >. ) )
5743, 56mpd 15 . . 3  |-  ( ph  ->  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `
 `' ( { C }  +c  { D } ) )  = 
<. C ,  D >. )
5854, 57oveq12d 6668 . 2  |-  ( ph  ->  ( ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { A }  +c  { B } ) ) P ( `' ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) `  `' ( { C }  +c  { D } ) ) )  =  ( <. A ,  B >. P
<. C ,  D >. ) )
59 eqid 2622 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) ) )  =  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )
60 fvexd 6203 . . . 4  |-  ( ph  ->  (Scalar `  R )  e.  _V )
61 2on 7568 . . . . 5  |-  2o  e.  On
6261a1i 11 . . . 4  |-  ( ph  ->  2o  e.  On )
63 xpscfn 16219 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W )  ->  `' ( { R }  +c  { S }
)  Fn  2o )
644, 5, 63syl2anc 693 . . . 4  |-  ( ph  ->  `' ( { R }  +c  { S }
)  Fn  2o )
6537, 10eleqtrd 2703 . . . 4  |-  ( ph  ->  `' ( { A }  +c  { B }
)  e.  ( Base `  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) ) ) )
6648, 10eleqtrd 2703 . . . 4  |-  ( ph  ->  `' ( { C }  +c  { D }
)  e.  ( Base `  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) ) ) )
67 eqid 2622 . . . 4  |-  ( dist `  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) ) )  =  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )
688, 59, 60, 62, 64, 65, 66, 67prdsdsval 16138 . . 3  |-  ( ph  ->  ( `' ( { A }  +c  { B } ) ( dist `  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) ) ) `' ( { C }  +c  { D } ) )  =  sup (
( ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B } ) `
 k ) (
dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )  u.  {
0 } ) , 
RR* ,  <  ) )
69 df2o3 7573 . . . . . . . . . . 11  |-  2o  =  { (/) ,  1o }
7069rexeqi 3143 . . . . . . . . . 10  |-  ( E. k  e.  2o  x  =  ( ( `' ( { A }  +c  { B } ) `
 k ) (
dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
)  <->  E. k  e.  { (/)
,  1o } x  =  ( ( `' ( { A }  +c  { B } ) `
 k ) (
dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )
71 0ex 4790 . . . . . . . . . . 11  |-  (/)  e.  _V
72 1on 7567 . . . . . . . . . . . 12  |-  1o  e.  On
7372elexi 3213 . . . . . . . . . . 11  |-  1o  e.  _V
74 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  (/)  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  ( `' ( { R }  +c  { S } ) `  (/) ) )
7574fveq2d 6195 . . . . . . . . . . . . 13  |-  ( k  =  (/)  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  ( `' ( { R }  +c  { S } ) `  (/) ) ) )
76 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  (/)  ->  ( `' ( { A }  +c  { B } ) `
 k )  =  ( `' ( { A }  +c  { B } ) `  (/) ) )
77 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  (/)  ->  ( `' ( { C }  +c  { D } ) `
 k )  =  ( `' ( { C }  +c  { D } ) `  (/) ) )
7875, 76, 77oveq123d 6671 . . . . . . . . . . . 12  |-  ( k  =  (/)  ->  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
)  =  ( ( `' ( { A }  +c  { B }
) `  (/) ) (
dist `  ( `' ( { R }  +c  { S } ) `  (/) ) ) ( `' ( { C }  +c  { D } ) `
 (/) ) ) )
7978eqeq2d 2632 . . . . . . . . . . 11  |-  ( k  =  (/)  ->  ( x  =  ( ( `' ( { A }  +c  { B } ) `
 k ) (
dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
)  <->  x  =  (
( `' ( { A }  +c  { B } ) `  (/) ) (
dist `  ( `' ( { R }  +c  { S } ) `  (/) ) ) ( `' ( { C }  +c  { D } ) `
 (/) ) ) ) )
80 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  1o  ->  ( `' ( { R }  +c  { S }
) `  k )  =  ( `' ( { R }  +c  { S } ) `  1o ) )
8180fveq2d 6195 . . . . . . . . . . . . 13  |-  ( k  =  1o  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  =  ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) )
82 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  1o  ->  ( `' ( { A }  +c  { B }
) `  k )  =  ( `' ( { A }  +c  { B } ) `  1o ) )
83 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  1o  ->  ( `' ( { C }  +c  { D }
) `  k )  =  ( `' ( { C }  +c  { D } ) `  1o ) )
8481, 82, 83oveq123d 6671 . . . . . . . . . . . 12  |-  ( k  =  1o  ->  (
( `' ( { A }  +c  { B } ) `  k
) ( dist `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { C }  +c  { D } ) `  k ) )  =  ( ( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) ) )
8584eqeq2d 2632 . . . . . . . . . . 11  |-  ( k  =  1o  ->  (
x  =  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
)  <->  x  =  (
( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) ) ) )
8671, 73, 79, 85rexpr 4239 . . . . . . . . . 10  |-  ( E. k  e.  { (/) ,  1o } x  =  ( ( `' ( { A }  +c  { B } ) `  k ) ( dist `  ( `' ( { R }  +c  { S } ) `  k
) ) ( `' ( { C }  +c  { D } ) `
 k ) )  <-> 
( x  =  ( ( `' ( { A }  +c  { B } ) `  (/) ) (
dist `  ( `' ( { R }  +c  { S } ) `  (/) ) ) ( `' ( { C }  +c  { D } ) `
 (/) ) )  \/  x  =  ( ( `' ( { A }  +c  { B }
) `  1o )
( dist `  ( `' ( { R }  +c  { S } ) `  1o ) ) ( `' ( { C }  +c  { D } ) `
 1o ) ) ) )
8770, 86bitri 264 . . . . . . . . 9  |-  ( E. k  e.  2o  x  =  ( ( `' ( { A }  +c  { B } ) `
 k ) (
dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
)  <->  ( x  =  ( ( `' ( { A }  +c  { B } ) `  (/) ) ( dist `  ( `' ( { R }  +c  { S }
) `  (/) ) ) ( `' ( { C }  +c  { D } ) `  (/) ) )  \/  x  =  ( ( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) ) ) )
88 xpsc0 16220 . . . . . . . . . . . . . . 15  |-  ( R  e.  V  ->  ( `' ( { R }  +c  { S }
) `  (/) )  =  R )
894, 88syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  (/) )  =  R )
9089fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dist `  ( `' ( { R }  +c  { S }
) `  (/) ) )  =  ( dist `  R
) )
91 xpsc0 16220 . . . . . . . . . . . . . 14  |-  ( A  e.  X  ->  ( `' ( { A }  +c  { B }
) `  (/) )  =  A )
9226, 91syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( { A }  +c  { B } ) `  (/) )  =  A )
93 xpsc0 16220 . . . . . . . . . . . . . 14  |-  ( C  e.  X  ->  ( `' ( { C }  +c  { D }
) `  (/) )  =  C )
9439, 93syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( { C }  +c  { D } ) `  (/) )  =  C )
9590, 92, 94oveq123d 6671 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( `' ( { A }  +c  { B } ) `  (/) ) ( dist `  ( `' ( { R }  +c  { S }
) `  (/) ) ) ( `' ( { C }  +c  { D } ) `  (/) ) )  =  ( A (
dist `  R ) C ) )
9617oveqi 6663 . . . . . . . . . . . . 13  |-  ( A M C )  =  ( A ( (
dist `  R )  |`  ( X  X.  X
) ) C )
9726, 39ovresd 6801 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ( (
dist `  R )  |`  ( X  X.  X
) ) C )  =  ( A (
dist `  R ) C ) )
9896, 97syl5eq 2668 . . . . . . . . . . . 12  |-  ( ph  ->  ( A M C )  =  ( A ( dist `  R
) C ) )
9995, 98eqtr4d 2659 . . . . . . . . . . 11  |-  ( ph  ->  ( ( `' ( { A }  +c  { B } ) `  (/) ) ( dist `  ( `' ( { R }  +c  { S }
) `  (/) ) ) ( `' ( { C }  +c  { D } ) `  (/) ) )  =  ( A M C ) )
10099eqeq2d 2632 . . . . . . . . . 10  |-  ( ph  ->  ( x  =  ( ( `' ( { A }  +c  { B } ) `  (/) ) (
dist `  ( `' ( { R }  +c  { S } ) `  (/) ) ) ( `' ( { C }  +c  { D } ) `
 (/) ) )  <->  x  =  ( A M C ) ) )
101 xpsc1 16221 . . . . . . . . . . . . . . 15  |-  ( S  e.  W  ->  ( `' ( { R }  +c  { S }
) `  1o )  =  S )
1025, 101syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  1o )  =  S )
103102fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
)  =  ( dist `  S ) )
104 xpsc1 16221 . . . . . . . . . . . . . 14  |-  ( B  e.  Y  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  B )
10527, 104syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( { A }  +c  { B } ) `  1o )  =  B )
106 xpsc1 16221 . . . . . . . . . . . . . 14  |-  ( D  e.  Y  ->  ( `' ( { C }  +c  { D }
) `  1o )  =  D )
10740, 106syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( { C }  +c  { D } ) `  1o )  =  D )
108103, 105, 107oveq123d 6671 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) )  =  ( B ( dist `  S
) D ) )
10918oveqi 6663 . . . . . . . . . . . . 13  |-  ( B N D )  =  ( B ( (
dist `  S )  |`  ( Y  X.  Y
) ) D )
11027, 40ovresd 6801 . . . . . . . . . . . . 13  |-  ( ph  ->  ( B ( (
dist `  S )  |`  ( Y  X.  Y
) ) D )  =  ( B (
dist `  S ) D ) )
111109, 110syl5eq 2668 . . . . . . . . . . . 12  |-  ( ph  ->  ( B N D )  =  ( B ( dist `  S
) D ) )
112108, 111eqtr4d 2659 . . . . . . . . . . 11  |-  ( ph  ->  ( ( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) )  =  ( B N D ) )
113112eqeq2d 2632 . . . . . . . . . 10  |-  ( ph  ->  ( x  =  ( ( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) )  <->  x  =  ( B N D ) ) )
114100, 113orbi12d 746 . . . . . . . . 9  |-  ( ph  ->  ( ( x  =  ( ( `' ( { A }  +c  { B } ) `  (/) ) ( dist `  ( `' ( { R }  +c  { S }
) `  (/) ) ) ( `' ( { C }  +c  { D } ) `  (/) ) )  \/  x  =  ( ( `' ( { A }  +c  { B } ) `  1o ) ( dist `  ( `' ( { R }  +c  { S }
) `  1o )
) ( `' ( { C }  +c  { D } ) `  1o ) ) )  <->  ( x  =  ( A M C )  \/  x  =  ( B N D ) ) ) )
11587, 114syl5bb 272 . . . . . . . 8  |-  ( ph  ->  ( E. k  e.  2o  x  =  ( ( `' ( { A }  +c  { B } ) `  k
) ( dist `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { C }  +c  { D } ) `  k ) )  <->  ( x  =  ( A M C )  \/  x  =  ( B N D ) ) ) )
116 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
117 eqid 2622 . . . . . . . . . 10  |-  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )  =  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B } ) `  k
) ( dist `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { C }  +c  { D } ) `  k ) ) )
118117elrnmpt 5372 . . . . . . . . 9  |-  ( x  e.  _V  ->  (
x  e.  ran  (
k  e.  2o  |->  ( ( `' ( { A }  +c  { B } ) `  k
) ( dist `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { C }  +c  { D } ) `  k ) ) )  <->  E. k  e.  2o  x  =  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) ) )
119116, 118ax-mp 5 . . . . . . . 8  |-  ( x  e.  ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )  <->  E. k  e.  2o  x  =  ( ( `' ( { A }  +c  { B } ) `  k
) ( dist `  ( `' ( { R }  +c  { S }
) `  k )
) ( `' ( { C }  +c  { D } ) `  k ) ) )
120116elpr 4198 . . . . . . . 8  |-  ( x  e.  { ( A M C ) ,  ( B N D ) }  <->  ( x  =  ( A M C )  \/  x  =  ( B N D ) ) )
121115, 119, 1203bitr4g 303 . . . . . . 7  |-  ( ph  ->  ( x  e.  ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B } ) `  k ) ( dist `  ( `' ( { R }  +c  { S } ) `  k
) ) ( `' ( { C }  +c  { D } ) `
 k ) ) )  <->  x  e.  { ( A M C ) ,  ( B N D ) } ) )
122121eqrdv 2620 . . . . . 6  |-  ( ph  ->  ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B } ) `
 k ) (
dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )  =  {
( A M C ) ,  ( B N D ) } )
123122uneq1d 3766 . . . . 5  |-  ( ph  ->  ( ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )  u.  {
0 } )  =  ( { ( A M C ) ,  ( B N D ) }  u.  {
0 } ) )
124 uncom 3757 . . . . 5  |-  ( { ( A M C ) ,  ( B N D ) }  u.  { 0 } )  =  ( { 0 }  u.  {
( A M C ) ,  ( B N D ) } )
125123, 124syl6eq 2672 . . . 4  |-  ( ph  ->  ( ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B }
) `  k )
( dist `  ( `' ( { R }  +c  { S } ) `  k ) ) ( `' ( { C }  +c  { D }
) `  k )
) )  u.  {
0 } )  =  ( { 0 }  u.  { ( A M C ) ,  ( B N D ) } ) )
126125supeq1d 8352 . . 3  |-  ( ph  ->  sup ( ( ran  ( k  e.  2o  |->  ( ( `' ( { A }  +c  { B } ) `  k ) ( dist `  ( `' ( { R }  +c  { S } ) `  k
) ) ( `' ( { C }  +c  { D } ) `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  )  =  sup ( ( { 0 }  u.  { ( A M C ) ,  ( B N D ) } ) ,  RR* ,  <  )
)
127 0xr 10086 . . . . . 6  |-  0  e.  RR*
128127a1i 11 . . . . 5  |-  ( ph  ->  0  e.  RR* )
129128snssd 4340 . . . 4  |-  ( ph  ->  { 0 }  C_  RR* )
130 xmetcl 22136 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  A  e.  X  /\  C  e.  X
)  ->  ( A M C )  e.  RR* )
13119, 26, 39, 130syl3anc 1326 . . . . 5  |-  ( ph  ->  ( A M C )  e.  RR* )
132 xmetcl 22136 . . . . . 6  |-  ( ( N  e.  ( *Met `  Y )  /\  B  e.  Y  /\  D  e.  Y
)  ->  ( B N D )  e.  RR* )
13320, 27, 40, 132syl3anc 1326 . . . . 5  |-  ( ph  ->  ( B N D )  e.  RR* )
134 prssi 4353 . . . . 5  |-  ( ( ( A M C )  e.  RR*  /\  ( B N D )  e. 
RR* )  ->  { ( A M C ) ,  ( B N D ) }  C_  RR* )
135131, 133, 134syl2anc 693 . . . 4  |-  ( ph  ->  { ( A M C ) ,  ( B N D ) }  C_  RR* )
136 xrltso 11974 . . . . . 6  |-  <  Or  RR*
137 supsn 8378 . . . . . 6  |-  ( (  <  Or  RR*  /\  0  e.  RR* )  ->  sup ( { 0 } ,  RR* ,  <  )  =  0 )
138136, 127, 137mp2an 708 . . . . 5  |-  sup ( { 0 } ,  RR* ,  <  )  =  0
139 supxrcl 12145 . . . . . . 7  |-  ( { ( A M C ) ,  ( B N D ) } 
C_  RR*  ->  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  )  e.  RR* )
140135, 139syl 17 . . . . . 6  |-  ( ph  ->  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  )  e. 
RR* )
141 xmetge0 22149 . . . . . . 7  |-  ( ( M  e.  ( *Met `  X )  /\  A  e.  X  /\  C  e.  X
)  ->  0  <_  ( A M C ) )
14219, 26, 39, 141syl3anc 1326 . . . . . 6  |-  ( ph  ->  0  <_  ( A M C ) )
143 ovex 6678 . . . . . . . 8  |-  ( A M C )  e. 
_V
144143prid1 4297 . . . . . . 7  |-  ( A M C )  e. 
{ ( A M C ) ,  ( B N D ) }
145 supxrub 12154 . . . . . . 7  |-  ( ( { ( A M C ) ,  ( B N D ) }  C_  RR*  /\  ( A M C )  e. 
{ ( A M C ) ,  ( B N D ) } )  ->  ( A M C )  <_  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
146135, 144, 145sylancl 694 . . . . . 6  |-  ( ph  ->  ( A M C )  <_  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
147128, 131, 140, 142, 146xrletrd 11993 . . . . 5  |-  ( ph  ->  0  <_  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
148138, 147syl5eqbr 4688 . . . 4  |-  ( ph  ->  sup ( { 0 } ,  RR* ,  <  )  <_  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
149 supxrun 12146 . . . 4  |-  ( ( { 0 }  C_  RR* 
/\  { ( A M C ) ,  ( B N D ) }  C_  RR*  /\  sup ( { 0 } ,  RR* ,  <  )  <_  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )  ->  sup ( ( { 0 }  u.  { ( A M C ) ,  ( B N D ) } ) ,  RR* ,  <  )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
150129, 135, 148, 149syl3anc 1326 . . 3  |-  ( ph  ->  sup ( ( { 0 }  u.  {
( A M C ) ,  ( B N D ) } ) ,  RR* ,  <  )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  )
)
15168, 126, 1503eqtrd 2660 . 2  |-  ( ph  ->  ( `' ( { A }  +c  { B } ) ( dist `  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) ) ) `' ( { C }  +c  { D } ) )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
15251, 58, 1513eqtr3d 2664 1  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    Or wor 5034    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   Oncon0 5723    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   supcsup 8346    +c ccda 8989   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   Basecbs 15857  Scalarcsca 15944   distcds 15950   X_scprds 16106    X.s cxps 16166   *Metcxmt 19731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-xrs 16162  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-xmet 19739
This theorem is referenced by:  tmsxpsval  22343
  Copyright terms: Public domain W3C validator