MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Structured version   Visualization version   Unicode version

Theorem xpsmet 22187
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t  |-  T  =  ( R  X.s  S )
xpsds.x  |-  X  =  ( Base `  R
)
xpsds.y  |-  Y  =  ( Base `  S
)
xpsds.1  |-  ( ph  ->  R  e.  V )
xpsds.2  |-  ( ph  ->  S  e.  W )
xpsds.p  |-  P  =  ( dist `  T
)
xpsds.m  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
xpsds.n  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
xpsmet.3  |-  ( ph  ->  M  e.  ( Met `  X ) )
xpsmet.4  |-  ( ph  ->  N  e.  ( Met `  Y ) )
Assertion
Ref Expression
xpsmet  |-  ( ph  ->  P  e.  ( Met `  ( X  X.  Y
) ) )

Proof of Theorem xpsmet
Dummy variables  x  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3  |-  T  =  ( R  X.s  S )
2 xpsds.x . . 3  |-  X  =  ( Base `  R
)
3 xpsds.y . . 3  |-  Y  =  ( Base `  S
)
4 xpsds.1 . . 3  |-  ( ph  ->  R  e.  V )
5 xpsds.2 . . 3  |-  ( ph  ->  S  e.  W )
6 eqid 2622 . . 3  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
7 eqid 2622 . . 3  |-  (Scalar `  R )  =  (Scalar `  R )
8 eqid 2622 . . 3  |-  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s `' ( { R }  +c  { S } ) )
91, 2, 3, 4, 5, 6, 7, 8xpsval 16232 . 2  |-  ( ph  ->  T  =  ( `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  "s  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8xpslem 16233 . 2  |-  ( ph  ->  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) ) )
116xpsff1o2 16231 . . 3  |-  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )
12 f1ocnv 6149 . . 3  |-  ( ( x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ( X  X.  Y ) -1-1-onto-> ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  ->  `' (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) : ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y
) )
1311, 12mp1i 13 . 2  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) ) : ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) -1-1-onto-> ( X  X.  Y ) )
14 ovexd 6680 . 2  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  e.  _V )
15 eqid 2622 . 2  |-  ( (
dist `  ( (Scalar `  R ) X_s `' ( { R }  +c  { S }
) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  =  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
16 xpsds.p . 2  |-  P  =  ( dist `  T
)
17 eqid 2622 . . . . 5  |-  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )
18 eqid 2622 . . . . 5  |-  ( Base `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
19 eqid 2622 . . . . 5  |-  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  ( `' ( { R }  +c  { S } ) `  k ) )
20 eqid 2622 . . . . 5  |-  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  |`  (
( Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) ) )
21 eqid 2622 . . . . 5  |-  ( dist `  ( (Scalar `  R
) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  =  ( dist `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
22 fvexd 6203 . . . . 5  |-  ( ph  ->  (Scalar `  R )  e.  _V )
23 2onn 7720 . . . . . 6  |-  2o  e.  om
24 nnfi 8153 . . . . . 6  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2523, 24mp1i 13 . . . . 5  |-  ( ph  ->  2o  e.  Fin )
26 fvexd 6203 . . . . 5  |-  ( (
ph  /\  k  e.  2o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  e. 
_V )
27 elpri 4197 . . . . . . 7  |-  ( k  e.  { (/) ,  1o }  ->  ( k  =  (/)  \/  k  =  1o ) )
28 df2o3 7573 . . . . . . 7  |-  2o  =  { (/) ,  1o }
2927, 28eleq2s 2719 . . . . . 6  |-  ( k  e.  2o  ->  (
k  =  (/)  \/  k  =  1o ) )
30 xpsmet.3 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( Met `  X ) )
3130adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  M  e.  ( Met `  X ) )
32 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  (/)  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  ( `' ( { R }  +c  { S } ) `  (/) ) )
33 xpsc0 16220 . . . . . . . . . . . . 13  |-  ( R  e.  V  ->  ( `' ( { R }  +c  { S }
) `  (/) )  =  R )
344, 33syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  (/) )  =  R )
3532, 34sylan9eqr 2678 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  (/) )  ->  ( `' ( { R }  +c  { S } ) `  k )  =  R )
3635fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  (/) )  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  R )
)
3735fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  (/) )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  R )
)
3837, 2syl6eqr 2674 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  (/) )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  X )
3938sqxpeqd 5141 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( X  X.  X ) )
4036, 39reseq12d 5397 . . . . . . . . 9  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  R )  |`  ( X  X.  X ) ) )
41 xpsds.m . . . . . . . . 9  |-  M  =  ( ( dist `  R
)  |`  ( X  X.  X ) )
4240, 41syl6eqr 2674 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  M )
4338fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  k  =  (/) )  ->  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Met `  X ) )
4431, 42, 433eltr4d 2716 . . . . . . 7  |-  ( (
ph  /\  k  =  (/) )  ->  ( ( dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
45 xpsmet.4 . . . . . . . . 9  |-  ( ph  ->  N  e.  ( Met `  Y ) )
4645adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  N  e.  ( Met `  Y
) )
47 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  1o  ->  ( `' ( { R }  +c  { S }
) `  k )  =  ( `' ( { R }  +c  { S } ) `  1o ) )
48 xpsc1 16221 . . . . . . . . . . . . 13  |-  ( S  e.  W  ->  ( `' ( { R }  +c  { S }
) `  1o )  =  S )
495, 48syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' ( { R }  +c  { S } ) `  1o )  =  S )
5047, 49sylan9eqr 2678 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  1o )  ->  ( `' ( { R }  +c  { S } ) `
 k )  =  S )
5150fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  1o )  ->  ( dist `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
dist `  S )
)
5250fveq2d 6195 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  =  1o )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  (
Base `  S )
)
5352, 3syl6eqr 2674 . . . . . . . . . . 11  |-  ( (
ph  /\  k  =  1o )  ->  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  =  Y )
5453sqxpeqd 5141 . . . . . . . . . 10  |-  ( (
ph  /\  k  =  1o )  ->  ( (
Base `  ( `' ( { R }  +c  { S } ) `  k ) )  X.  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Y  X.  Y ) )
5551, 54reseq12d 5397 . . . . . . . . 9  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  ( ( dist `  S )  |`  ( Y  X.  Y ) ) )
56 xpsds.n . . . . . . . . 9  |-  N  =  ( ( dist `  S
)  |`  ( Y  X.  Y ) )
5755, 56syl6eqr 2674 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  =  N )
5853fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  k  =  1o )  ->  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) )  =  ( Met `  Y ) )
5946, 57, 583eltr4d 2716 . . . . . . 7  |-  ( (
ph  /\  k  =  1o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
6044, 59jaodan 826 . . . . . 6  |-  ( (
ph  /\  ( k  =  (/)  \/  k  =  1o ) )  -> 
( ( dist `  ( `' ( { R }  +c  { S }
) `  k )
)  |`  ( ( Base `  ( `' ( { R }  +c  { S } ) `  k
) )  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S }
) `  k )
) ) )
6129, 60sylan2 491 . . . . 5  |-  ( (
ph  /\  k  e.  2o )  ->  ( (
dist `  ( `' ( { R }  +c  { S } ) `  k ) )  |`  ( ( Base `  ( `' ( { R }  +c  { S }
) `  k )
)  X.  ( Base `  ( `' ( { R }  +c  { S } ) `  k
) ) ) )  e.  ( Met `  ( Base `  ( `' ( { R }  +c  { S } ) `  k ) ) ) )
6217, 18, 19, 20, 21, 22, 25, 26, 61prdsmet 22175 . . . 4  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )  e.  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) )
63 xpscfn 16219 . . . . . . . 8  |-  ( ( R  e.  V  /\  S  e.  W )  ->  `' ( { R }  +c  { S }
)  Fn  2o )
644, 5, 63syl2anc 693 . . . . . . 7  |-  ( ph  ->  `' ( { R }  +c  { S }
)  Fn  2o )
65 dffn5 6241 . . . . . . 7  |-  ( `' ( { R }  +c  { S } )  Fn  2o  <->  `' ( { R }  +c  { S } )  =  ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) )
6664, 65sylib 208 . . . . . 6  |-  ( ph  ->  `' ( { R }  +c  { S }
)  =  ( k  e.  2o  |->  ( `' ( { R }  +c  { S } ) `
 k ) ) )
6766oveq2d 6666 . . . . 5  |-  ( ph  ->  ( (Scalar `  R
) X_s `' ( { R }  +c  { S }
) )  =  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) )
6867fveq2d 6195 . . . 4  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
dist `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
6967fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( Base `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  =  (
Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7010, 69eqtrd 2656 . . . . 5  |-  ( ph  ->  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  {
y } ) )  =  ( Base `  (
(Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) )
7170fveq2d 6195 . . . 4  |-  ( ph  ->  ( Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  =  ( Met `  ( Base `  ( (Scalar `  R ) X_s ( k  e.  2o  |->  ( `' ( { R }  +c  { S }
) `  k )
) ) ) ) )
7262, 68, 713eltr4d 2716 . . 3  |-  ( ph  ->  ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
73 ssid 3624 . . 3  |-  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
74 metres2 22168 . . 3  |-  ( ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  e.  ( Met `  ran  (
x  e.  X , 
y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  /\  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  C_  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )  -> 
( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
7572, 73, 74sylancl 694 . 2  |-  ( ph  ->  ( ( dist `  (
(Scalar `  R ) X_s `' ( { R }  +c  { S } ) ) )  |`  ( ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )  X.  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )  e.  ( Met `  ran  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) ) )
769, 10, 13, 14, 15, 16, 75imasf1omet 22181 1  |-  ( ph  ->  P  e.  ( Met `  ( X  X.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   1oc1o 7553   2oc2o 7554   Fincfn 7955    +c ccda 8989   Basecbs 15857  Scalarcsca 15944   distcds 15950   X_scprds 16106    X.s cxps 16166   Metcme 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-xrs 16162  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-xmet 19739  df-met 19740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator