MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem9 Structured version   Visualization version   Unicode version

Theorem axsegconlem9 25805
Description: Lemma for axsegcon 25807. Show that  B F is congruent to  C D. (Contributed by Scott Fenton, 19-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
axsegconlem7.2  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
axsegconlem8.3  |-  F  =  ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  -  (
( sqr `  T
)  x.  ( A `
 k ) ) )  /  ( sqr `  S ) ) )
Assertion
Ref Expression
axsegconlem9  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( F `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
Distinct variable groups:    A, p    B, p    C, p    D, p    N, p    A, i, k    B, i, k    C, i, k    D, i, k    i, N, k    S, i, k    T, i, k    i, p
Allowed substitution hints:    S( p)    T( p)    F( i, k, p)

Proof of Theorem axsegconlem9
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( B `  k )  =  ( B `  i ) )
21oveq2d 6666 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  =  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )
3 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( A `  k )  =  ( A `  i ) )
43oveq2d 6666 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( sqr `  T
)  x.  ( A `
 k ) )  =  ( ( sqr `  T )  x.  ( A `  i )
) )
52, 4oveq12d 6668 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 k ) )  -  ( ( sqr `  T )  x.  ( A `  k )
) )  =  ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) ) )
65oveq1d 6665 . . . . . . . . 9  |-  ( k  =  i  ->  (
( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  k )
)  -  ( ( sqr `  T )  x.  ( A `  k ) ) )  /  ( sqr `  S
) )  =  ( ( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
)  -  ( ( sqr `  T )  x.  ( A `  i ) ) )  /  ( sqr `  S
) ) )
7 axsegconlem8.3 . . . . . . . . 9  |-  F  =  ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  -  (
( sqr `  T
)  x.  ( A `
 k ) ) )  /  ( sqr `  S ) ) )
8 ovex 6678 . . . . . . . . 9  |-  ( ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  /  ( sqr `  S ) )  e.  _V
96, 7, 8fvmpt 6282 . . . . . . . 8  |-  ( i  e.  ( 1 ... N )  ->  ( F `  i )  =  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )
109adantl 482 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  =  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )
1110oveq2d 6666 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( F `
 i ) )  =  ( ( B `
 i )  -  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) ) )
12 axsegconlem2.1 . . . . . . . . . . . . 13  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
1312axsegconlem4 25800 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sqr `  S
)  e.  RR )
14133adant3 1081 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  e.  RR )
1514ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  e.  RR )
16 simpl2 1065 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
17 fveere 25781 . . . . . . . . . . 11  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
1816, 17sylan 488 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  RR )
1915, 18remulcld 10070 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( B `
 i ) )  e.  RR )
2019recnd 10068 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( B `
 i ) )  e.  CC )
21 axsegconlem7.2 . . . . . . . . . . . . . 14  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
2221axsegconlem4 25800 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( sqr `  T
)  e.  RR )
23 readdcl 10019 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  S
)  e.  RR  /\  ( sqr `  T )  e.  RR )  -> 
( ( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2414, 22, 23syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2524adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2625, 18remulcld 10070 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  e.  RR )
2722ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  T )  e.  RR )
28 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
29 fveere 25781 . . . . . . . . . . . 12  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
3028, 29sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
3127, 30remulcld 10070 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( A `
 i ) )  e.  RR )
3226, 31resubcld 10458 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  e.  RR )
3332recnd 10068 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  e.  CC )
3415recnd 10068 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  e.  CC )
3512axsegconlem6 25802 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <  ( sqr `  S
) )
3635gt0ne0d 10592 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  =/=  0 )
3736ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  =/=  0 )
3820, 33, 34, 37divsubdird 10840 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  /  ( sqr `  S ) )  =  ( ( ( ( sqr `  S
)  x.  ( B `
 i ) )  /  ( sqr `  S
) )  -  (
( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
)  -  ( ( sqr `  T )  x.  ( A `  i ) ) )  /  ( sqr `  S
) ) ) )
3926recnd 10068 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  e.  CC )
4031recnd 10068 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( A `
 i ) )  e.  CC )
4120, 39, 40subsubd 10420 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  =  ( ( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) ) )
4227recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  T )  e.  CC )
4318renegcld 10457 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u ( B `  i )  e.  RR )
4443recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u ( B `  i )  e.  CC )
4530recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  CC )
4642, 44, 45adddid 10064 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( -u ( B `  i )  +  ( A `  i ) ) )  =  ( ( ( sqr `  T )  x.  -u ( B `  i ) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) ) )
4744, 45addcomd 10238 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( -u ( B `  i
)  +  ( A `
 i ) )  =  ( ( A `
 i )  + 
-u ( B `  i ) ) )
4818recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
4945, 48negsubd 10398 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  +  -u ( B `  i )
)  =  ( ( A `  i )  -  ( B `  i ) ) )
5047, 49eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( -u ( B `  i
)  +  ( A `
 i ) )  =  ( ( A `
 i )  -  ( B `  i ) ) )
5150oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( -u ( B `  i )  +  ( A `  i ) ) )  =  ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) ) )
5225recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  CC )
5352, 34negsubdi2d 10408 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( ( sqr `  S )  -  ( ( sqr `  S )  +  ( sqr `  T ) ) ) )
5434, 42pncan2d 10394 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( sqr `  T ) )
5554negeqd 10275 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  -u (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  -u ( sqr `  T ) )
5653, 55eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  -  ( ( sqr `  S )  +  ( sqr `  T
) ) )  = 
-u ( sqr `  T
) )
5756oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  -  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( B `  i
) )  =  (
-u ( sqr `  T
)  x.  ( B `
 i ) ) )
5834, 52, 48subdird 10487 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  -  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( B `  i
) )  =  ( ( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
) ) )
59 mulneg12 10468 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  T
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( -u ( sqr `  T
)  x.  ( B `
 i ) )  =  ( ( sqr `  T )  x.  -u ( B `  i )
) )
6042, 48, 59syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( -u ( sqr `  T
)  x.  ( B `
 i ) )  =  ( ( sqr `  T )  x.  -u ( B `  i )
) )
6157, 58, 603eqtr3rd 2665 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  -u ( B `  i )
)  =  ( ( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
) ) )
6261oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  -u ( B `  i )
)  +  ( ( sqr `  T )  x.  ( A `  i ) ) )  =  ( ( ( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) ) )
6346, 51, 623eqtr3rd 2665 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )  +  ( ( sqr `  T
)  x.  ( A `
 i ) ) )  =  ( ( sqr `  T )  x.  ( ( A `
 i )  -  ( B `  i ) ) ) )
6441, 63eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( B `
 i ) )  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  =  ( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) )
6564oveq1d 6665 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  -  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  /  ( sqr `  S ) )  =  ( ( ( sqr `  T )  x.  ( ( A `
 i )  -  ( B `  i ) ) )  /  ( sqr `  S ) ) )
6648, 34, 37divcan3d 10806 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( B `
 i ) )  /  ( sqr `  S
) )  =  ( B `  i ) )
6766oveq1d 6665 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  x.  ( B `  i )
)  /  ( sqr `  S ) )  -  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )  =  ( ( B `
 i )  -  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) ) )
6838, 65, 673eqtr3rd 2665 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  /  ( sqr `  S ) ) )  =  ( ( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  /  ( sqr `  S
) ) )
6911, 68eqtrd 2656 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( B `  i
)  -  ( F `
 i ) )  =  ( ( ( sqr `  T )  x.  ( ( A `
 i )  -  ( B `  i ) ) )  /  ( sqr `  S ) ) )
7069oveq1d 6665 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( B `  i )  -  ( F `  i )
) ^ 2 )  =  ( ( ( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  /  ( sqr `  S
) ) ^ 2 ) )
7130, 18resubcld 10458 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  RR )
7227, 71remulcld 10070 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  e.  RR )
7372recnd 10068 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) )  e.  CC )
7473, 34, 37sqdivd 13021 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) )  /  ( sqr `  S ) ) ^
2 )  =  ( ( ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) ) ^ 2 )  /  ( ( sqr `  S ) ^ 2 ) ) )
7571recnd 10068 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  CC )
7642, 75sqmuld 13020 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) ^ 2 )  =  ( ( ( sqr `  T ) ^ 2 )  x.  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) ) )
7721axsegconlem2 25798 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  T  e.  RR )
7877ad2antlr 763 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  T  e.  RR )
7921axsegconlem3 25799 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
0  <_  T )
8079ad2antlr 763 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  0  <_  T )
81 resqrtth 13996 . . . . . . . 8  |-  ( ( T  e.  RR  /\  0  <_  T )  -> 
( ( sqr `  T
) ^ 2 )  =  T )
8278, 80, 81syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
) ^ 2 )  =  T )
8382oveq1d 6665 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
) ^ 2 )  x.  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  =  ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) ) )
8476, 83eqtrd 2656 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( ( A `  i )  -  ( B `  i ) ) ) ^ 2 )  =  ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) ) )
8512axsegconlem2 25798 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  S  e.  RR )
8612axsegconlem3 25799 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
0  <_  S )
87 resqrtth 13996 . . . . . . . 8  |-  ( ( S  e.  RR  /\  0  <_  S )  -> 
( ( sqr `  S
) ^ 2 )  =  S )
8885, 86, 87syl2anc 693 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( ( sqr `  S
) ^ 2 )  =  S )
89883adant3 1081 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  (
( sqr `  S
) ^ 2 )  =  S )
9089ad2antrr 762 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
) ^ 2 )  =  S )
9184, 90oveq12d 6668 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  (
( A `  i
)  -  ( B `
 i ) ) ) ^ 2 )  /  ( ( sqr `  S ) ^ 2 ) )  =  ( ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S ) )
9270, 74, 913eqtrd 2660 . . 3  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( B `  i )  -  ( F `  i )
) ^ 2 )  =  ( ( T  x.  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  /  S ) )
9392sumeq2dv 14433 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( F `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S ) )
94 fzfid 12772 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
1 ... N )  e. 
Fin )
9577adantl 482 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  T  e.  RR )
9695recnd 10068 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  T  e.  CC )
9771resqcld 13035 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
9897recnd 10068 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  CC )
9994, 96, 98fsummulc2 14516 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( T  x.  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  = 
sum_ i  e.  ( 1 ... N ) ( T  x.  (
( ( A `  i )  -  ( B `  i )
) ^ 2 ) ) )
10099oveq1d 6665 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S )  =  ( sum_ i  e.  ( 1 ... N
) ( T  x.  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )  /  S ) )
101 fveq2 6191 . . . . . . . . 9  |-  ( p  =  i  ->  ( C `  p )  =  ( C `  i ) )
102 fveq2 6191 . . . . . . . . 9  |-  ( p  =  i  ->  ( D `  p )  =  ( D `  i ) )
103101, 102oveq12d 6668 . . . . . . . 8  |-  ( p  =  i  ->  (
( C `  p
)  -  ( D `
 p ) )  =  ( ( C `
 i )  -  ( D `  i ) ) )
104103oveq1d 6665 . . . . . . 7  |-  ( p  =  i  ->  (
( ( C `  p )  -  ( D `  p )
) ^ 2 )  =  ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
105104cbvsumv 14426 . . . . . 6  |-  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )
10621, 105eqtri 2644 . . . . 5  |-  T  = 
sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )
107 fveq2 6191 . . . . . . . . 9  |-  ( i  =  p  ->  ( A `  i )  =  ( A `  p ) )
108 fveq2 6191 . . . . . . . . 9  |-  ( i  =  p  ->  ( B `  i )  =  ( B `  p ) )
109107, 108oveq12d 6668 . . . . . . . 8  |-  ( i  =  p  ->  (
( A `  i
)  -  ( B `
 i ) )  =  ( ( A `
 p )  -  ( B `  p ) ) )
110109oveq1d 6665 . . . . . . 7  |-  ( i  =  p  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )
111110cbvsumv 14426 . . . . . 6  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 )
112111, 12eqtr4i 2647 . . . . 5  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  S
113106, 112oveq12i 6662 . . . 4  |-  ( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )  =  ( sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )  x.  S )
114 eqid 2622 . . . . . . . . . 10  |-  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )
115114axsegconlem2 25798 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
1161153adant3 1081 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  e.  RR )
117116adantr 481 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  e.  RR )
11895, 117remulcld 10070 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( T  x.  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  e.  RR )
119118recnd 10068 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( T  x.  sum_ i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  e.  CC )
120 eqid 2622 . . . . . . . 8  |-  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )
121120axsegconlem2 25798 . . . . . . 7  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )  e.  RR )
122121adantl 482 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  e.  RR )
123122recnd 10068 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  e.  CC )
124853adant3 1081 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  S  e.  RR )
125124adantr 481 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  S  e.  RR )
126125recnd 10068 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  S  e.  CC )
127863adant3 1081 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <_  S )
128 sqrt00 14004 . . . . . . . . 9  |-  ( ( S  e.  RR  /\  0  <_  S )  -> 
( ( sqr `  S
)  =  0  <->  S  =  0 ) )
129128necon3bid 2838 . . . . . . . 8  |-  ( ( S  e.  RR  /\  0  <_  S )  -> 
( ( sqr `  S
)  =/=  0  <->  S  =/=  0 ) )
130124, 127, 129syl2anc 693 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  (
( sqr `  S
)  =/=  0  <->  S  =/=  0 ) )
13136, 130mpbid 222 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  S  =/=  0 )
132131adantr 481 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  S  =/=  0 )
133119, 123, 126, 132divmul3d 10835 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( ( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 )  <-> 
( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  =  ( sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 )  x.  S ) ) )
134113, 133mpbiri 248 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( T  x.  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 ) )  /  S )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )
13578, 97remulcld 10070 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( T  x.  ( (
( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )  e.  RR )
136135recnd 10068 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( T  x.  ( (
( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )  e.  CC )
13794, 126, 136, 132fsumdivc 14518 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( sum_ i  e.  ( 1 ... N ) ( T  x.  ( ( ( A `  i
)  -  ( B `
 i ) ) ^ 2 ) )  /  S )  = 
sum_ i  e.  ( 1 ... N ) ( ( T  x.  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )  /  S ) )
138100, 134, 1373eqtr3rd 2665 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( T  x.  ( ( ( A `  i )  -  ( B `  i ) ) ^
2 ) )  /  S )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
13993, 138eqtrd 2656 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( F `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   ...cfz 12326   ^cexp 12860   sqrcsqrt 13973   sum_csu 14416   EEcee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771
This theorem is referenced by:  axsegcon  25807
  Copyright terms: Public domain W3C validator