MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem2 Structured version   Visualization version   GIF version

Theorem basellem2 24808
Description: Lemma for basel 24816. Show that 𝑃 is a polynomial of degree 𝑀, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
Assertion
Ref Expression
basellem2 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Distinct variable groups:   𝑡,𝑗,𝑛,𝑀   𝑗,𝑁,𝑛,𝑡   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑡,𝑗)

Proof of Theorem basellem2
StepHypRef Expression
1 basel.p . . 3 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
2 ssid 3624 . . . . 5 ℂ ⊆ ℂ
32a1i 11 . . . 4 (𝑀 ∈ ℕ → ℂ ⊆ ℂ)
4 nnnn0 11299 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
5 elfznn0 12433 . . . . . . 7 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
6 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑗 → (2 · 𝑛) = (2 · 𝑗))
76oveq2d 6666 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑗)))
8 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑀𝑛) = (𝑀𝑗))
98oveq2d 6666 . . . . . . . . 9 (𝑛 = 𝑗 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑗)))
107, 9oveq12d 6668 . . . . . . . 8 (𝑛 = 𝑗 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
11 eqid 2622 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
12 ovex 6678 . . . . . . . 8 ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ V
1310, 11, 12fvmpt 6282 . . . . . . 7 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
145, 13syl 17 . . . . . 6 (𝑗 ∈ (0...𝑀) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
1514adantl 482 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
16 basel.n . . . . . . . . . . . 12 𝑁 = ((2 · 𝑀) + 1)
17 2nn 11185 . . . . . . . . . . . . . 14 2 ∈ ℕ
18 nnmulcl 11043 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
1917, 18mpan 706 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
2019peano2nnd 11037 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
2116, 20syl5eqel 2705 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
2221nnnn0d 11351 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
23 2z 11409 . . . . . . . . . . 11 2 ∈ ℤ
24 nn0z 11400 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
25 zmulcl 11426 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
2623, 24, 25sylancr 695 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℤ)
27 bccl 13109 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑛) ∈ ℤ) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2822, 26, 27syl2an 494 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℕ0)
2928nn0cnd 11353 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑁C(2 · 𝑛)) ∈ ℂ)
30 nnz 11399 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
31 zsubcl 11419 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛) ∈ ℤ)
3230, 24, 31syl2an 494 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℤ)
33 neg1cn 11124 . . . . . . . . . 10 -1 ∈ ℂ
34 neg1ne0 11126 . . . . . . . . . 10 -1 ≠ 0
35 expclz 12885 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑛) ∈ ℤ) → (-1↑(𝑀𝑛)) ∈ ℂ)
3633, 34, 35mp3an12 1414 . . . . . . . . 9 ((𝑀𝑛) ∈ ℤ → (-1↑(𝑀𝑛)) ∈ ℂ)
3732, 36syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑀𝑛)) ∈ ℂ)
3829, 37mulcld 10060 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) ∈ ℂ)
3938, 11fmptd 6385 . . . . . 6 (𝑀 ∈ ℕ → (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ)
40 ffvelrn 6357 . . . . . 6 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
4139, 5, 40syl2an 494 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ∈ ℂ)
4215, 41eqeltrrd 2702 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ ℂ)
433, 4, 42elplyd 23958 . . 3 (𝑀 ∈ ℕ → (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))) ∈ (Poly‘ℂ))
441, 43syl5eqel 2705 . 2 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
45 nnre 11027 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
46 nn0re 11301 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℝ)
47 ltnle 10117 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4845, 46, 47syl2an 494 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ ¬ 𝑗𝑀))
4913ad2antlr 763 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))))
5022ad2antrr 762 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℕ0)
51 nn0z 11400 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5251ad2antlr 763 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℤ)
53 zmulcl 11426 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (2 · 𝑗) ∈ ℤ)
5423, 52, 53sylancr 695 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑗) ∈ ℤ)
55 ax-1cn 9994 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
56552timesi 11147 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
5756oveq2i 6661 . . . . . . . . . . . . . . 15 ((2 · 𝑀) + (2 · 1)) = ((2 · 𝑀) + (1 + 1))
58 2cnd 11093 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 2 ∈ ℂ)
59 nncn 11028 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
6059ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℂ)
6155a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 1 ∈ ℂ)
6258, 60, 61adddid 10064 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 · 1)))
6316oveq1i 6660 . . . . . . . . . . . . . . . 16 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
6419ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℕ)
6564nncnd 11036 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · 𝑀) ∈ ℂ)
6665, 61, 61addassd 10062 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
6763, 66syl5eq 2668 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1)))
6857, 62, 673eqtr4a 2682 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) = (𝑁 + 1))
69 zltp1le 11427 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
7030, 51, 69syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 ↔ (𝑀 + 1) ≤ 𝑗))
7170biimpa 501 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ≤ 𝑗)
7245ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑀 ∈ ℝ)
73 peano2re 10209 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
7472, 73syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑀 + 1) ∈ ℝ)
7546ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑗 ∈ ℝ)
76 2re 11090 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
77 2pos 11112 . . . . . . . . . . . . . . . . . 18 0 < 2
7876, 77pm3.2i 471 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
7978a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 ∈ ℝ ∧ 0 < 2))
80 lemul2 10876 . . . . . . . . . . . . . . . 16 (((𝑀 + 1) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
8174, 75, 79, 80syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑀 + 1) ≤ 𝑗 ↔ (2 · (𝑀 + 1)) ≤ (2 · 𝑗)))
8271, 81mpbid 222 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (2 · (𝑀 + 1)) ≤ (2 · 𝑗))
8368, 82eqbrtrrd 4677 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 + 1) ≤ (2 · 𝑗))
8421nnzd 11481 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
8584ad2antrr 762 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 ∈ ℤ)
86 zltp1le 11427 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (2 · 𝑗) ∈ ℤ) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8785, 54, 86syl2anc 693 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁 < (2 · 𝑗) ↔ (𝑁 + 1) ≤ (2 · 𝑗)))
8883, 87mpbird 247 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → 𝑁 < (2 · 𝑗))
8988olcd 408 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗)))
90 bcval4 13094 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ ∧ ((2 · 𝑗) < 0 ∨ 𝑁 < (2 · 𝑗))) → (𝑁C(2 · 𝑗)) = 0)
9150, 54, 89, 90syl3anc 1326 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (𝑁C(2 · 𝑗)) = 0)
9291oveq1d 6665 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) = (0 · (-1↑(𝑀𝑗))))
93 zsubcl 11419 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑀𝑗) ∈ ℤ)
9430, 51, 93syl2an 494 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀𝑗) ∈ ℤ)
95 expclz 12885 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (𝑀𝑗) ∈ ℤ) → (-1↑(𝑀𝑗)) ∈ ℂ)
9633, 34, 95mp3an12 1414 . . . . . . . . . . . 12 ((𝑀𝑗) ∈ ℤ → (-1↑(𝑀𝑗)) ∈ ℂ)
9794, 96syl 17 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (-1↑(𝑀𝑗)) ∈ ℂ)
9897adantr 481 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (-1↑(𝑀𝑗)) ∈ ℂ)
9998mul02d 10234 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → (0 · (-1↑(𝑀𝑗))) = 0)
10049, 92, 993eqtrd 2660 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) ∧ 𝑀 < 𝑗) → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0)
101100ex 450 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (𝑀 < 𝑗 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
10248, 101sylbird 250 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗𝑀 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) = 0))
103102necon1ad 2811 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
104103ralrimiva 2966 . . . 4 (𝑀 ∈ ℕ → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀))
105 plyco0 23948 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
1064, 39, 105syl2anc 693 . . . 4 (𝑀 ∈ ℕ → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) ≠ 0 → 𝑗𝑀)))
107104, 106mpbird 247 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) “ (ℤ‘(𝑀 + 1))) = {0})
10814oveq1d 6665 . . . . . . 7 (𝑗 ∈ (0...𝑀) → (((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
109108sumeq2i 14429 . . . . . 6 Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗))
110109mpteq2i 4741 . . . . 5 (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))) = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
1111, 110eqtr4i 2647 . . . 4 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗)))
112111a1i 11 . . 3 (𝑀 ∈ ℕ → 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑗) · (𝑡𝑗))))
113 oveq2 6658 . . . . . . . . 9 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
114113oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
115 oveq2 6658 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
116115oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
117114, 116oveq12d 6668 . . . . . . 7 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
118 ovex 6678 . . . . . . 7 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
119117, 11, 118fvmpt 6282 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
1204, 119syl 17 . . . . 5 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
12159subidd 10380 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
122121oveq2d 6666 . . . . . . 7 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
123 exp0 12864 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
12433, 123ax-mp 5 . . . . . . 7 (-1↑0) = 1
125122, 124syl6eq 2672 . . . . . 6 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
126125oveq2d 6666 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
12719nnred 11035 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
128127lep1d 10955 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
129128, 16syl6breqr 4695 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
13019nnnn0d 11351 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ0)
131 nn0uz 11722 . . . . . . . . . . 11 0 = (ℤ‘0)
132130, 131syl6eleq 2711 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘0))
133 elfz5 12334 . . . . . . . . . 10 (((2 · 𝑀) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
134132, 84, 133syl2anc 693 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (0...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
135129, 134mpbird 247 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
136 bccl2 13110 . . . . . . . 8 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
137135, 136syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
138137nncnd 11036 . . . . . 6 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
139138mulid1d 10057 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
140120, 126, 1393eqtrd 2660 . . . 4 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = (𝑁C(2 · 𝑀)))
141137nnne0d 11065 . . . 4 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
142140, 141eqnetrd 2861 . . 3 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) ≠ 0)
14344, 4, 39, 107, 112, 142dgreq 24000 . 2 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
14444, 4, 39, 107, 112coeeq 23983 . 2 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
14544, 143, 1443jca 1242 1 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  Ccbc 13089  Σcsu 14416  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  basellem4  24810  basellem5  24811
  Copyright terms: Public domain W3C validator