Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2 Structured version   Visualization version   GIF version

Theorem cvmlift2 31298
Description: A two-dimensional version of cvmlift 31281. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
Assertion
Ref Expression
cvmlift2 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Distinct variable groups:   𝑓,𝐹   𝜑,𝑓   𝑓,𝐽   𝑓,𝐺   𝐶,𝑓   𝑃,𝑓
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2
Dummy variables 𝑔 𝑘 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . 2 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . 2 (𝜑𝑃𝐵)
5 cvmlift2.i . 2 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 coeq2 5280 . . . . 5 ( = 𝑔 → (𝐹) = (𝐹𝑔))
7 oveq1 6657 . . . . . . 7 (𝑤 = 𝑧 → (𝑤𝐺0) = (𝑧𝐺0))
87cbvmptv 4750 . . . . . 6 (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
98a1i 11 . . . . 5 ( = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
106, 9eqeq12d 2637 . . . 4 ( = 𝑔 → ((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))))
11 fveq1 6190 . . . . 5 ( = 𝑔 → (‘0) = (𝑔‘0))
1211eqeq1d 2624 . . . 4 ( = 𝑔 → ((‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
1310, 12anbi12d 747 . . 3 ( = 𝑔 → (((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃)))
1413cbvriotav 6622 . 2 ( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃))
15 coeq2 5280 . . . . . . . 8 (𝑘 = 𝑔 → (𝐹𝑘) = (𝐹𝑔))
16 oveq2 6658 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑢𝐺𝑤) = (𝑢𝐺𝑧))
1716cbvmptv 4750 . . . . . . . . 9 (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))
1817a1i 11 . . . . . . . 8 (𝑘 = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)))
1915, 18eqeq12d 2637 . . . . . . 7 (𝑘 = 𝑔 → ((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))))
20 fveq1 6190 . . . . . . . 8 (𝑘 = 𝑔 → (𝑘‘0) = (𝑔‘0))
2120eqeq1d 2624 . . . . . . 7 (𝑘 = 𝑔 → ((𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
2219, 21anbi12d 747 . . . . . 6 (𝑘 = 𝑔 → (((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))))
2322cbvriotav 6622 . . . . 5 (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
24 oveq1 6657 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝐺𝑧) = (𝑥𝐺𝑧))
2524mpteq2dv 4745 . . . . . . . 8 (𝑢 = 𝑥 → (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)))
2625eqeq2d 2632 . . . . . . 7 (𝑢 = 𝑥 → ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))))
27 fveq2 6191 . . . . . . . 8 (𝑢 = 𝑥 → (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))
2827eqeq2d 2632 . . . . . . 7 (𝑢 = 𝑥 → ((𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))
2926, 28anbi12d 747 . . . . . 6 (𝑢 = 𝑥 → (((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3029riotabidv 6613 . . . . 5 (𝑢 = 𝑥 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3123, 30syl5eq 2668 . . . 4 (𝑢 = 𝑥 → (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3231fveq1d 6193 . . 3 (𝑢 = 𝑥 → ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣))
33 fveq2 6191 . . 3 (𝑣 = 𝑦 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
3432, 33cbvmpt2v 6735 . 2 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
351, 2, 3, 4, 5, 14, 34cvmlift2lem13 31297 1 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ∃!wreu 2914   cuni 4436  cmpt 4729  ccom 5118  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937  [,]cicc 12178   Cn ccn 21028   ×t ctx 21363  IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-conn 21215  df-lly 21269  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204  df-cvm 31238
This theorem is referenced by:  cvmliftpht  31300
  Copyright terms: Public domain W3C validator