Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem26 Structured version   Visualization version   GIF version

Theorem fourierdlem26 40350
Description: Periodic image of a point 𝑌 that's in the period that begins with the point 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem26.1 (𝜑𝐴 ∈ ℝ)
fourierdlem26.2 (𝜑𝐵 ∈ ℝ)
fourierdlem26.3 (𝜑𝐴 < 𝐵)
fourierdlem26.4 𝑇 = (𝐵𝐴)
fourierdlem26.5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem26.6 (𝜑𝑋 ∈ ℝ)
fourierdlem26.7 (𝜑 → (𝐸𝑋) = 𝐵)
fourierdlem26.8 (𝜑𝑌 ∈ (𝑋(,](𝑋 + 𝑇)))
Assertion
Ref Expression
fourierdlem26 (𝜑 → (𝐸𝑌) = (𝐴 + (𝑌𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem26
StepHypRef Expression
1 fourierdlem26.5 . . . 4 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . 3 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 simpr 477 . . . 4 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
43oveq2d 6666 . . . . . . 7 ((𝜑𝑥 = 𝑌) → (𝐵𝑥) = (𝐵𝑌))
54oveq1d 6665 . . . . . 6 ((𝜑𝑥 = 𝑌) → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
65fveq2d 6195 . . . . 5 ((𝜑𝑥 = 𝑌) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
76oveq1d 6665 . . . 4 ((𝜑𝑥 = 𝑌) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
83, 7oveq12d 6668 . . 3 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
9 fourierdlem26.8 . . . . 5 (𝜑𝑌 ∈ (𝑋(,](𝑋 + 𝑇)))
10 fourierdlem26.6 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1110rexrd 10089 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
12 fourierdlem26.4 . . . . . . . 8 𝑇 = (𝐵𝐴)
13 fourierdlem26.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
14 fourierdlem26.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1513, 14resubcld 10458 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
1612, 15syl5eqel 2705 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
1710, 16readdcld 10069 . . . . . 6 (𝜑 → (𝑋 + 𝑇) ∈ ℝ)
18 elioc2 12236 . . . . . 6 ((𝑋 ∈ ℝ* ∧ (𝑋 + 𝑇) ∈ ℝ) → (𝑌 ∈ (𝑋(,](𝑋 + 𝑇)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇))))
1911, 17, 18syl2anc 693 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋(,](𝑋 + 𝑇)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇))))
209, 19mpbid 222 . . . 4 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇)))
2120simp1d 1073 . . 3 (𝜑𝑌 ∈ ℝ)
2213, 21resubcld 10458 . . . . . . . 8 (𝜑 → (𝐵𝑌) ∈ ℝ)
23 fourierdlem26.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2414, 13posdifd 10614 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2523, 24mpbid 222 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
2625, 12syl6breqr 4695 . . . . . . . . 9 (𝜑 → 0 < 𝑇)
2726gt0ne0d 10592 . . . . . . . 8 (𝜑𝑇 ≠ 0)
2822, 16, 27redivcld 10853 . . . . . . 7 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
2928flcld 12599 . . . . . 6 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
3029zred 11482 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
3130, 16remulcld 10070 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
3221, 31readdcld 10069 . . 3 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
332, 8, 21, 32fvmptd 6288 . 2 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3410recnd 10068 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
3521recnd 10068 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℂ)
3634, 35pncan3d 10395 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑌𝑋)) = 𝑌)
3736eqcomd 2628 . . . . . . . . . 10 (𝜑𝑌 = (𝑋 + (𝑌𝑋)))
3837oveq2d 6666 . . . . . . . . 9 (𝜑 → (𝐵𝑌) = (𝐵 − (𝑋 + (𝑌𝑋))))
3913recnd 10068 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4035, 34subcld 10392 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ∈ ℂ)
4139, 34, 40subsub4d 10423 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − (𝑌𝑋)) = (𝐵 − (𝑋 + (𝑌𝑋))))
4238, 41eqtr4d 2659 . . . . . . . 8 (𝜑 → (𝐵𝑌) = ((𝐵𝑋) − (𝑌𝑋)))
4342oveq1d 6665 . . . . . . 7 (𝜑 → ((𝐵𝑌) / 𝑇) = (((𝐵𝑋) − (𝑌𝑋)) / 𝑇))
4413, 10resubcld 10458 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
4544recnd 10068 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℂ)
4616recnd 10068 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4745, 40, 46, 27divsubdird 10840 . . . . . . 7 (𝜑 → (((𝐵𝑋) − (𝑌𝑋)) / 𝑇) = (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)))
4840, 46, 27divnegd 10814 . . . . . . . . . 10 (𝜑 → -((𝑌𝑋) / 𝑇) = (-(𝑌𝑋) / 𝑇))
4935, 34negsubdi2d 10408 . . . . . . . . . . 11 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
5049oveq1d 6665 . . . . . . . . . 10 (𝜑 → (-(𝑌𝑋) / 𝑇) = ((𝑋𝑌) / 𝑇))
5148, 50eqtrd 2656 . . . . . . . . 9 (𝜑 → -((𝑌𝑋) / 𝑇) = ((𝑋𝑌) / 𝑇))
5251oveq2d 6666 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + -((𝑌𝑋) / 𝑇)) = (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)))
5344, 16, 27redivcld 10853 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
5453recnd 10068 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℂ)
5540, 46, 27divcld 10801 . . . . . . . . 9 (𝜑 → ((𝑌𝑋) / 𝑇) ∈ ℂ)
5654, 55negsubd 10398 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + -((𝑌𝑋) / 𝑇)) = (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)))
57 1cnd 10056 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5854, 57npcand 10396 . . . . . . . . . . 11 (𝜑 → ((((𝐵𝑋) / 𝑇) − 1) + 1) = ((𝐵𝑋) / 𝑇))
5958eqcomd 2628 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) / 𝑇) = ((((𝐵𝑋) / 𝑇) − 1) + 1))
6059oveq1d 6665 . . . . . . . . 9 (𝜑 → (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)) = (((((𝐵𝑋) / 𝑇) − 1) + 1) + ((𝑋𝑌) / 𝑇)))
6154, 57subcld 10392 . . . . . . . . . 10 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) ∈ ℂ)
6234, 35subcld 10392 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ∈ ℂ)
6362, 46, 27divcld 10801 . . . . . . . . . 10 (𝜑 → ((𝑋𝑌) / 𝑇) ∈ ℂ)
6461, 57, 63addassd 10062 . . . . . . . . 9 (𝜑 → (((((𝐵𝑋) / 𝑇) − 1) + 1) + ((𝑋𝑌) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6560, 64eqtrd 2656 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6652, 56, 653eqtr3d 2664 . . . . . . 7 (𝜑 → (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6743, 47, 663eqtrd 2660 . . . . . 6 (𝜑 → ((𝐵𝑌) / 𝑇) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6867fveq2d 6195 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) = (⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))))
6910, 21resubcld 10458 . . . . . . . . 9 (𝜑 → (𝑋𝑌) ∈ ℝ)
7016, 69readdcld 10069 . . . . . . . 8 (𝜑 → (𝑇 + (𝑋𝑌)) ∈ ℝ)
7116, 26elrpd 11869 . . . . . . . 8 (𝜑𝑇 ∈ ℝ+)
7234, 46addcomd 10238 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 + 𝑇) = (𝑇 + 𝑋))
7372oveq2d 6666 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,](𝑋 + 𝑇)) = (𝑋(,](𝑇 + 𝑋)))
749, 73eleqtrd 2703 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑋(,](𝑇 + 𝑋)))
7516, 10readdcld 10069 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + 𝑋) ∈ ℝ)
76 elioc2 12236 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑇 + 𝑋) ∈ ℝ) → (𝑌 ∈ (𝑋(,](𝑇 + 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋))))
7711, 75, 76syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ (𝑋(,](𝑇 + 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋))))
7874, 77mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋)))
7978simp3d 1075 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝑇 + 𝑋))
8021, 10, 16lesubaddd 10624 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑋) ≤ 𝑇𝑌 ≤ (𝑇 + 𝑋)))
8179, 80mpbird 247 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ≤ 𝑇)
8221, 10resubcld 10458 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℝ)
8316, 82subge0d 10617 . . . . . . . . . 10 (𝜑 → (0 ≤ (𝑇 − (𝑌𝑋)) ↔ (𝑌𝑋) ≤ 𝑇))
8481, 83mpbird 247 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑇 − (𝑌𝑋)))
8546, 35, 34subsub2d 10421 . . . . . . . . 9 (𝜑 → (𝑇 − (𝑌𝑋)) = (𝑇 + (𝑋𝑌)))
8684, 85breqtrd 4679 . . . . . . . 8 (𝜑 → 0 ≤ (𝑇 + (𝑋𝑌)))
8770, 71, 86divge0d 11912 . . . . . . 7 (𝜑 → 0 ≤ ((𝑇 + (𝑋𝑌)) / 𝑇))
8846, 62, 46, 27divdird 10839 . . . . . . . 8 (𝜑 → ((𝑇 + (𝑋𝑌)) / 𝑇) = ((𝑇 / 𝑇) + ((𝑋𝑌) / 𝑇)))
8946, 27dividd 10799 . . . . . . . . . 10 (𝜑 → (𝑇 / 𝑇) = 1)
9089eqcomd 2628 . . . . . . . . 9 (𝜑 → 1 = (𝑇 / 𝑇))
9190oveq1d 6665 . . . . . . . 8 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) = ((𝑇 / 𝑇) + ((𝑋𝑌) / 𝑇)))
9288, 91eqtr4d 2659 . . . . . . 7 (𝜑 → ((𝑇 + (𝑋𝑌)) / 𝑇) = (1 + ((𝑋𝑌) / 𝑇)))
9387, 92breqtrd 4679 . . . . . 6 (𝜑 → 0 ≤ (1 + ((𝑋𝑌) / 𝑇)))
9420simp2d 1074 . . . . . . . . 9 (𝜑𝑋 < 𝑌)
9510, 21sublt0d 10653 . . . . . . . . 9 (𝜑 → ((𝑋𝑌) < 0 ↔ 𝑋 < 𝑌))
9694, 95mpbird 247 . . . . . . . 8 (𝜑 → (𝑋𝑌) < 0)
9769, 71, 96divlt0gt0d 39498 . . . . . . 7 (𝜑 → ((𝑋𝑌) / 𝑇) < 0)
9869, 16, 27redivcld 10853 . . . . . . . 8 (𝜑 → ((𝑋𝑌) / 𝑇) ∈ ℝ)
99 1red 10055 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
100 ltaddneg 10251 . . . . . . . 8 ((((𝑋𝑌) / 𝑇) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑋𝑌) / 𝑇) < 0 ↔ (1 + ((𝑋𝑌) / 𝑇)) < 1))
10198, 99, 100syl2anc 693 . . . . . . 7 (𝜑 → (((𝑋𝑌) / 𝑇) < 0 ↔ (1 + ((𝑋𝑌) / 𝑇)) < 1))
10297, 101mpbid 222 . . . . . 6 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) < 1)
10353flcld 12599 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
104103zcnd 11483 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
105104, 46mulcld 10060 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
10634, 105pncan2d 10394 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
107106eqcomd 2628 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
108107oveq1d 6665 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) / 𝑇) = (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇))
109104, 46, 27divcan4d 10807 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑋) / 𝑇)))
110 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 = 𝑋)
111 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
112111oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
113112fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
114113oveq1d 6665 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
115110, 114oveq12d 6668 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
116115adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
117 reflcl 12597 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
11853, 117syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
119118, 16remulcld 10070 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
12010, 119readdcld 10069 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
1212, 116, 10, 120fvmptd 6288 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
122121eqcomd 2628 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = (𝐸𝑋))
123122oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((𝐸𝑋) − 𝑋))
124123oveq1d 6665 . . . . . . . . . . 11 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇) = (((𝐸𝑋) − 𝑋) / 𝑇))
125 fourierdlem26.7 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑋) = 𝐵)
126125oveq1d 6665 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑋) − 𝑋) = (𝐵𝑋))
127126oveq1d 6665 . . . . . . . . . . 11 (𝜑 → (((𝐸𝑋) − 𝑋) / 𝑇) = ((𝐵𝑋) / 𝑇))
128124, 127eqtrd 2656 . . . . . . . . . 10 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇) = ((𝐵𝑋) / 𝑇))
129108, 109, 1283eqtr3d 2664 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) = ((𝐵𝑋) / 𝑇))
130129, 103eqeltrrd 2702 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℤ)
131 1zzd 11408 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
132130, 131zsubcld 11487 . . . . . . 7 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) ∈ ℤ)
13399, 98readdcld 10069 . . . . . . 7 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) ∈ ℝ)
134 flbi2 12618 . . . . . . 7 (((((𝐵𝑋) / 𝑇) − 1) ∈ ℤ ∧ (1 + ((𝑋𝑌) / 𝑇)) ∈ ℝ) → ((⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1) ↔ (0 ≤ (1 + ((𝑋𝑌) / 𝑇)) ∧ (1 + ((𝑋𝑌) / 𝑇)) < 1)))
135132, 133, 134syl2anc 693 . . . . . 6 (𝜑 → ((⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1) ↔ (0 ≤ (1 + ((𝑋𝑌) / 𝑇)) ∧ (1 + ((𝑋𝑌) / 𝑇)) < 1)))
13693, 102, 135mpbir2and 957 . . . . 5 (𝜑 → (⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1))
137129eqcomd 2628 . . . . . 6 (𝜑 → ((𝐵𝑋) / 𝑇) = (⌊‘((𝐵𝑋) / 𝑇)))
138137oveq1d 6665 . . . . 5 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) = ((⌊‘((𝐵𝑋) / 𝑇)) − 1))
13968, 136, 1383eqtrd 2660 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) = ((⌊‘((𝐵𝑋) / 𝑇)) − 1))
140139oveq1d 6665 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
141140oveq2d 6666 . 2 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) = (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
14237oveq1d 6665 . . 3 (𝜑 → (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
143104, 57, 46subdird 10487 . . . . 5 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇)))
144143oveq2d 6666 . . . 4 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))))
14534, 40addcld 10059 . . . . . 6 (𝜑 → (𝑋 + (𝑌𝑋)) ∈ ℂ)
14657, 46mulcld 10060 . . . . . 6 (𝜑 → (1 · 𝑇) ∈ ℂ)
147145, 105, 146addsubassd 10412 . . . . 5 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))))
148147eqcomd 2628 . . . 4 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))) = (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)))
14934, 40, 105add32d 10263 . . . . . 6 (𝜑 → ((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)))
150149oveq1d 6665 . . . . 5 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) − (1 · 𝑇)))
151122oveq1d 6665 . . . . . 6 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) = ((𝐸𝑋) + (𝑌𝑋)))
15246mulid2d 10058 . . . . . 6 (𝜑 → (1 · 𝑇) = 𝑇)
153151, 152oveq12d 6668 . . . . 5 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) − (1 · 𝑇)) = (((𝐸𝑋) + (𝑌𝑋)) − 𝑇))
154125, 13eqeltrd 2701 . . . . . . . 8 (𝜑 → (𝐸𝑋) ∈ ℝ)
155154recnd 10068 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ ℂ)
156155, 40, 46addsubd 10413 . . . . . 6 (𝜑 → (((𝐸𝑋) + (𝑌𝑋)) − 𝑇) = (((𝐸𝑋) − 𝑇) + (𝑌𝑋)))
157125oveq1d 6665 . . . . . . . 8 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝐵𝑇))
15812a1i 11 . . . . . . . . 9 (𝜑𝑇 = (𝐵𝐴))
159158oveq2d 6666 . . . . . . . 8 (𝜑 → (𝐵𝑇) = (𝐵 − (𝐵𝐴)))
16014recnd 10068 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16139, 160nncand 10397 . . . . . . . 8 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
162157, 159, 1613eqtrd 2660 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = 𝐴)
163162oveq1d 6665 . . . . . 6 (𝜑 → (((𝐸𝑋) − 𝑇) + (𝑌𝑋)) = (𝐴 + (𝑌𝑋)))
164156, 163eqtrd 2656 . . . . 5 (𝜑 → (((𝐸𝑋) + (𝑌𝑋)) − 𝑇) = (𝐴 + (𝑌𝑋)))
165150, 153, 1643eqtrd 2660 . . . 4 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = (𝐴 + (𝑌𝑋)))
166144, 148, 1653eqtrd 2660 . . 3 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = (𝐴 + (𝑌𝑋)))
167142, 166eqtrd 2656 . 2 (𝜑 → (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = (𝐴 + (𝑌𝑋)))
16833, 141, 1673eqtrd 2660 1 (𝜑 → (𝐸𝑌) = (𝐴 + (𝑌𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cz 11377  (,]cioc 12176  cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioc 12180  df-fl 12593
This theorem is referenced by:  fourierdlem65  40388  fourierdlem79  40402
  Copyright terms: Public domain W3C validator