| Step | Hyp | Ref
| Expression |
| 1 | | simprr 796 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ (∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) → 𝑥 = (∫1‘𝑓)) |
| 2 | | itg1cl 23452 |
. . . . . . . 8
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
| 3 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ (∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) →
(∫1‘𝑓)
∈ ℝ) |
| 4 | 1, 3 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ (∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) → 𝑥 ∈ ℝ) |
| 5 | 4 | rexlimiva 3028 |
. . . . 5
⊢
(∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) → 𝑥 ∈ ℝ) |
| 6 | 5 | abssi 3677 |
. . . 4
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆
ℝ |
| 7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆
ℝ) |
| 8 | | i1f0 23454 |
. . . . . 6
⊢ (ℝ
× {0}) ∈ dom ∫1 |
| 9 | | 3nn 11186 |
. . . . . . . 8
⊢ 3 ∈
ℕ |
| 10 | | nnrp 11842 |
. . . . . . . 8
⊢ (3 ∈
ℕ → 3 ∈ ℝ+) |
| 11 | | ne0i 3921 |
. . . . . . . 8
⊢ (3 ∈
ℝ+ → ℝ+ ≠ ∅) |
| 12 | 9, 10, 11 | mp2b 10 |
. . . . . . 7
⊢
ℝ+ ≠ ∅ |
| 13 | | itg2addnc.f2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 14 | 13 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ (0[,)+∞)) |
| 15 | | elrege0 12278 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑧) ∈ (0[,)+∞) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑧))) |
| 16 | 14, 15 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑧))) |
| 17 | 16 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐹‘𝑧)) |
| 18 | 17 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐹‘𝑧)) |
| 19 | | reex 10027 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
V) |
| 21 | | c0ex 10034 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ∈
V) |
| 23 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 0) = (𝑧 ∈ ℝ ↦
0)) |
| 24 | 13 | feqmptd 6249 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹‘𝑧))) |
| 25 | 20, 22, 14, 23, 24 | ofrfval2 6915 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐹‘𝑧))) |
| 26 | 18, 25 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹) |
| 27 | 26 | ralrimivw 2967 |
. . . . . . 7
⊢ (𝜑 → ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹) |
| 28 | | r19.2z 4060 |
. . . . . . 7
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹) → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹) |
| 29 | 12, 27, 28 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹) |
| 30 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑓 = (ℝ × {0}) →
(∫1‘𝑓)
= (∫1‘(ℝ × {0}))) |
| 31 | | itg10 23455 |
. . . . . . . . . 10
⊢
(∫1‘(ℝ × {0})) = 0 |
| 32 | 30, 31 | syl6req 2673 |
. . . . . . . . 9
⊢ (𝑓 = (ℝ × {0}) →
0 = (∫1‘𝑓)) |
| 33 | 32 | biantrud 528 |
. . . . . . . 8
⊢ (𝑓 = (ℝ × {0}) →
(∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)))) |
| 34 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (ℝ × {0}) →
(𝑓‘𝑧) = ((ℝ × {0})‘𝑧)) |
| 35 | 21 | fvconst2 6469 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → ((ℝ
× {0})‘𝑧) =
0) |
| 36 | 34, 35 | sylan9eq 2676 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
(𝑓‘𝑧) = 0) |
| 37 | 36 | iftrued 4094 |
. . . . . . . . . . 11
⊢ ((𝑓 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) = 0) |
| 38 | 37 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ (𝑓 = (ℝ × {0}) →
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ 0)) |
| 39 | 38 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑓 = (ℝ × {0}) →
((𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹)) |
| 40 | 39 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑓 = (ℝ × {0}) →
(∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ↔ ∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘𝑟 ≤ 𝐹)) |
| 41 | 33, 40 | bitr3d 270 |
. . . . . . 7
⊢ (𝑓 = (ℝ × {0}) →
((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)) ↔ ∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐹)) |
| 42 | 41 | rspcev 3309 |
. . . . . 6
⊢
(((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘𝑟 ≤ 𝐹) → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓))) |
| 43 | 8, 29, 42 | sylancr 695 |
. . . . 5
⊢ (𝜑 → ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓))) |
| 44 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 = (∫1‘𝑓) ↔ 0 =
(∫1‘𝑓))) |
| 45 | 44 | anbi2d 740 |
. . . . . . 7
⊢ (𝑥 = 0 → ((∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)))) |
| 46 | 45 | rexbidv 3052 |
. . . . . 6
⊢ (𝑥 = 0 → (∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓)))) |
| 47 | 21, 46 | elab 3350 |
. . . . 5
⊢ (0 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ↔ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 0 =
(∫1‘𝑓))) |
| 48 | 43, 47 | sylibr 224 |
. . . 4
⊢ (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) |
| 49 | | ne0i 3921 |
. . . 4
⊢ (0 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ≠
∅) |
| 50 | 48, 49 | syl 17 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ≠
∅) |
| 51 | | icossicc 12260 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 52 | | fss 6056 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) |
| 53 | 51, 52 | mpan2 707 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,)+∞)
→ 𝐹:ℝ⟶(0[,]+∞)) |
| 54 | | eqid 2622 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} |
| 55 | 54 | itg2addnclem 33461 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 56 | 13, 53, 55 | 3syl 18 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐹)
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 57 | | itg2addnc.f3 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
| 58 | 56, 57 | eqeltrrd 2702 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
∈ ℝ) |
| 59 | | ressxr 10083 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
| 60 | 6, 59 | sstri 3612 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆
ℝ* |
| 61 | | supxrub 12154 |
. . . . . 6
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆ ℝ*
∧ 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 62 | 60, 61 | mpan 706 |
. . . . 5
⊢ (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 63 | 62 | rgen 2922 |
. . . 4
⊢
∀𝑏 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
) |
| 64 | | breq2 4657 |
. . . . . 6
⊢ (𝑎 = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
→ (𝑏 ≤ 𝑎 ↔ 𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
))) |
| 65 | 64 | ralbidv 2986 |
. . . . 5
⊢ (𝑎 = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
→ (∀𝑏 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎 ↔ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
))) |
| 66 | 65 | rspcev 3309 |
. . . 4
⊢
((sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) → ∃𝑎 ∈
ℝ ∀𝑏 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎) |
| 67 | 58, 63, 66 | sylancl 694 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎) |
| 68 | | simprr 796 |
. . . . . . 7
⊢ ((𝑔 ∈ dom ∫1
∧ (∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))) → 𝑥 = (∫1‘𝑔)) |
| 69 | | itg1cl 23452 |
. . . . . . . 8
⊢ (𝑔 ∈ dom ∫1
→ (∫1‘𝑔) ∈ ℝ) |
| 70 | 69 | adantr 481 |
. . . . . . 7
⊢ ((𝑔 ∈ dom ∫1
∧ (∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))) →
(∫1‘𝑔)
∈ ℝ) |
| 71 | 68, 70 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑔 ∈ dom ∫1
∧ (∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))) → 𝑥 ∈ ℝ) |
| 72 | 71 | rexlimiva 3028 |
. . . . 5
⊢
(∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) → 𝑥 ∈ ℝ) |
| 73 | 72 | abssi 3677 |
. . . 4
⊢ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆
ℝ |
| 74 | 73 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆
ℝ) |
| 75 | | itg2addnc.g2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℝ⟶(0[,)+∞)) |
| 76 | 75 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ (0[,)+∞)) |
| 77 | | elrege0 12278 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑧) ∈ (0[,)+∞) ↔ ((𝐺‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑧))) |
| 78 | 76, 77 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝐺‘𝑧) ∈ ℝ ∧ 0 ≤ (𝐺‘𝑧))) |
| 79 | 78 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ≤ (𝐺‘𝑧)) |
| 80 | 79 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℝ 0 ≤ (𝐺‘𝑧)) |
| 81 | 75 | feqmptd 6249 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℝ ↦ (𝐺‘𝑧))) |
| 82 | 20, 22, 76, 23, 81 | ofrfval2 6915 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐺‘𝑧))) |
| 83 | 80, 82 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺) |
| 84 | 83 | ralrimivw 2967 |
. . . . . . 7
⊢ (𝜑 → ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺) |
| 85 | | r19.2z 4060 |
. . . . . . 7
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺) → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺) |
| 86 | 12, 84, 85 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺) |
| 87 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑔 = (ℝ × {0}) →
(∫1‘𝑔)
= (∫1‘(ℝ × {0}))) |
| 88 | 87, 31 | syl6req 2673 |
. . . . . . . . 9
⊢ (𝑔 = (ℝ × {0}) →
0 = (∫1‘𝑔)) |
| 89 | 88 | biantrud 528 |
. . . . . . . 8
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ↔ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)))) |
| 90 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (ℝ × {0}) →
(𝑔‘𝑧) = ((ℝ × {0})‘𝑧)) |
| 91 | 90, 35 | sylan9eq 2676 |
. . . . . . . . . . . 12
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
(𝑔‘𝑧) = 0) |
| 92 | 91 | iftrued 4094 |
. . . . . . . . . . 11
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) = 0) |
| 93 | 92 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ (𝑔 = (ℝ × {0}) →
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ 0)) |
| 94 | 93 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑔 = (ℝ × {0}) →
((𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ↔ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺)) |
| 95 | 94 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ↔ ∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘𝑟 ≤ 𝐺)) |
| 96 | 89, 95 | bitr3d 270 |
. . . . . . 7
⊢ (𝑔 = (ℝ × {0}) →
((∃𝑑 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)) ↔ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘𝑟 ≤ 𝐺)) |
| 97 | 96 | rspcev 3309 |
. . . . . 6
⊢
(((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘𝑟 ≤ 𝐺) → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔))) |
| 98 | 8, 86, 97 | sylancr 695 |
. . . . 5
⊢ (𝜑 → ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔))) |
| 99 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 = (∫1‘𝑔) ↔ 0 =
(∫1‘𝑔))) |
| 100 | 99 | anbi2d 740 |
. . . . . . 7
⊢ (𝑥 = 0 → ((∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)))) |
| 101 | 100 | rexbidv 3052 |
. . . . . 6
⊢ (𝑥 = 0 → (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔)))) |
| 102 | 21, 101 | elab 3350 |
. . . . 5
⊢ (0 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ↔ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 0 =
(∫1‘𝑔))) |
| 103 | 98, 102 | sylibr 224 |
. . . 4
⊢ (𝜑 → 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) |
| 104 | | ne0i 3921 |
. . . 4
⊢ (0 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ≠
∅) |
| 105 | 103, 104 | syl 17 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ≠
∅) |
| 106 | | fss 6056 |
. . . . . . 7
⊢ ((𝐺:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐺:ℝ⟶(0[,]+∞)) |
| 107 | 51, 106 | mpan2 707 |
. . . . . 6
⊢ (𝐺:ℝ⟶(0[,)+∞)
→ 𝐺:ℝ⟶(0[,]+∞)) |
| 108 | | eqid 2622 |
. . . . . . 7
⊢ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} |
| 109 | 108 | itg2addnclem 33461 |
. . . . . 6
⊢ (𝐺:ℝ⟶(0[,]+∞)
→ (∫2‘𝐺) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 110 | 75, 107, 109 | 3syl 18 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐺)
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 111 | | itg2addnc.g3 |
. . . . 5
⊢ (𝜑 →
(∫2‘𝐺)
∈ ℝ) |
| 112 | 110, 111 | eqeltrrd 2702 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
∈ ℝ) |
| 113 | 73, 59 | sstri 3612 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆
ℝ* |
| 114 | | supxrub 12154 |
. . . . . 6
⊢ (({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ*
∧ 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 115 | 113, 114 | mpan 706 |
. . . . 5
⊢ (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 116 | 115 | rgen 2922 |
. . . 4
⊢
∀𝑏 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
) |
| 117 | | breq2 4657 |
. . . . . 6
⊢ (𝑎 = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
→ (𝑏 ≤ 𝑎 ↔ 𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
| 118 | 117 | ralbidv 2986 |
. . . . 5
⊢ (𝑎 = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
→ (∀𝑏 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎 ↔ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
| 119 | 118 | rspcev 3309 |
. . . 4
⊢
((sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
∈ ℝ ∧ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → ∃𝑎 ∈
ℝ ∀𝑏 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎) |
| 120 | 112, 116,
119 | sylancl 694 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎) |
| 121 | | eqid 2622 |
. . 3
⊢ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} |
| 122 | 7, 50, 67, 74, 105, 120, 121 | supadd 10991 |
. 2
⊢ (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, < ) +
sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, < )) =
sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
| 123 | | supxrre 12157 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ≠ ∅ ∧
∃𝑎 ∈ ℝ
∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 ≤ 𝑎) → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, <
)) |
| 124 | 7, 50, 67, 123 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, <
)) |
| 125 | 56, 124 | eqtrd 2656 |
. . 3
⊢ (𝜑 →
(∫2‘𝐹)
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, <
)) |
| 126 | | supxrre 12157 |
. . . . 5
⊢ (({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ ∧ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ≠ ∅ ∧
∃𝑎 ∈ ℝ
∀𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 ≤ 𝑎) → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
)) |
| 127 | 74, 105, 120, 126 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
)) |
| 128 | 110, 127 | eqtrd 2656 |
. . 3
⊢ (𝜑 →
(∫2‘𝐺)
= sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
)) |
| 129 | 125, 128 | oveq12d 6668 |
. 2
⊢ (𝜑 →
((∫2‘𝐹) + (∫2‘𝐺)) = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ, < ) +
sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ, <
))) |
| 130 | | ge0addcl 12284 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
| 131 | 51, 130 | sseldi 3601 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,]+∞)) |
| 132 | 131 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 + 𝑦) ∈ (0[,]+∞)) |
| 133 | | inidm 3822 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
| 134 | 132, 13, 75, 20, 20, 133 | off 6912 |
. . . 4
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):ℝ⟶(0[,]+∞)) |
| 135 | | eqid 2622 |
. . . . 5
⊢ {𝑠 ∣ ∃ℎ ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))} = {𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))} |
| 136 | 135 | itg2addnclem 33461 |
. . . 4
⊢ ((𝐹 ∘𝑓 +
𝐺):ℝ⟶(0[,]+∞) →
(∫2‘(𝐹
∘𝑓 + 𝐺)) = sup({𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))}, ℝ*, <
)) |
| 137 | 134, 136 | syl 17 |
. . 3
⊢ (𝜑 →
(∫2‘(𝐹
∘𝑓 + 𝐺)) = sup({𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))}, ℝ*, <
)) |
| 138 | | itg2addnc.f1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 139 | 138, 13, 57, 75, 111 | itg2addnclem3 33463 |
. . . . . . 7
⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ)) → ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))) |
| 140 | | simpl 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
∈ dom ∫1) |
| 141 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔
∈ dom ∫1) |
| 142 | 140, 141 | i1fadd 23462 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘𝑓 + 𝑔) ∈ dom
∫1) |
| 143 | 142 | ad3antlr 767 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑓 ∘𝑓 + 𝑔) ∈ dom
∫1) |
| 144 | | reeanv 3107 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑐 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺)) |
| 145 | 144 | biimpri 218 |
. . . . . . . . . . . . . . . 16
⊢
((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ ∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) → ∃𝑐 ∈ ℝ+
∃𝑑 ∈
ℝ+ ((𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺)) |
| 146 | 145 | ad2ant2r 783 |
. . . . . . . . . . . . . . 15
⊢
(((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → ∃𝑐 ∈ ℝ+
∃𝑑 ∈
ℝ+ ((𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺)) |
| 147 | | ifcl 4130 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈
ℝ+) |
| 148 | 147 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺)) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈
ℝ+) |
| 149 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (0 ≤ (𝐹‘𝑧) ↔ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧))) |
| 150 | 149 | anbi1d 741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) ↔ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 151 | 150 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
| 152 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓‘𝑧) + 𝑐) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ↔ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧))) |
| 153 | 152 | anbi1d 741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓‘𝑧) + 𝑐) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) ↔ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 154 | 153 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓‘𝑧) + 𝑐) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) → (((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
| 155 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (0 ≤ (𝐺‘𝑧) ↔ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
| 156 | 155 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((0 ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) ↔ (0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 157 | 156 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((0 ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
| 158 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧) ↔ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
| 159 | 158 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) ↔ (0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 160 | 159 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
| 161 | | oveq12 6659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓‘𝑧) = 0 ∧ (𝑔‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (0 + 0)) |
| 162 | | 00id 10211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 + 0) =
0 |
| 163 | 161, 162 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓‘𝑧) = 0 ∧ (𝑔‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = 0) |
| 164 | 163 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑧) = 0 ∧ (𝑔‘𝑧) = 0) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) = 0) |
| 165 | 164 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) = 0) |
| 166 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝜑) |
| 167 | 15 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹‘𝑧) ∈ (0[,)+∞) → (𝐹‘𝑧) ∈ ℝ) |
| 168 | 14, 167 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ ℝ) |
| 169 | 77 | simplbi 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺‘𝑧) ∈ (0[,)+∞) → (𝐺‘𝑧) ∈ ℝ) |
| 170 | 76, 169 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ℝ) |
| 171 | 168, 170,
17, 79 | addge0d 10603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 172 | 166, 171 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 173 | 172 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 174 | 165, 173 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 175 | 174 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 176 | 172 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 177 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑧) = 0 → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (0 + (𝑔‘𝑧))) |
| 178 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑔 ∈ dom
∫1) |
| 179 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
| 180 | 179 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑧 ∈ ℝ)
→ (𝑔‘𝑧) ∈
ℝ) |
| 181 | 178, 180 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) ∈ ℝ) |
| 182 | 181 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) ∈ ℂ) |
| 183 | 182 | addid2d 10237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (0 + (𝑔‘𝑧)) = (𝑔‘𝑧)) |
| 184 | 177, 183 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (𝑔‘𝑧)) |
| 185 | 184 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
| 186 | 185 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
| 187 | 147 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℝ) |
| 188 | 187 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℝ) |
| 189 | 181, 188 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
| 190 | 189 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
| 191 | 166, 170 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ∈ ℝ) |
| 192 | 191 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (𝐺‘𝑧) ∈ ℝ) |
| 193 | 166, 168 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ ℝ) |
| 194 | 193, 191 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℝ) |
| 195 | 194 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℝ) |
| 196 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ+) |
| 197 | 196 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑑 ∈ ℝ) |
| 198 | | rpre 11839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈ ℝ+
→ 𝑐 ∈
ℝ) |
| 199 | | rpre 11839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑑 ∈ ℝ+
→ 𝑑 ∈
ℝ) |
| 200 | | min2 12021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑑) |
| 201 | 198, 199,
200 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑑) |
| 202 | 201 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑑) |
| 203 | 188, 197,
181, 202 | leadd2dd 10642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑔‘𝑧) + 𝑑)) |
| 204 | 181, 197 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + 𝑑) ∈ ℝ) |
| 205 | | letr 10131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑔‘𝑧) + 𝑑) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑔‘𝑧) + 𝑑) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧))) |
| 206 | 189, 204,
191, 205 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑔‘𝑧) + 𝑑) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧))) |
| 207 | 203, 206 | mpand 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧))) |
| 208 | 207 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧)) |
| 209 | 170, 168 | addge02d 10616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (0 ≤ (𝐹‘𝑧) ↔ (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 210 | 17, 209 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 211 | 166, 210 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 212 | 211 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (𝐺‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 213 | 190, 192,
195, 208, 212 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 214 | 213 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 215 | 186, 214 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 216 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 =
if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) → (0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)) ↔ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 217 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) → ((((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)) ↔ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 218 | 216, 217 | ifboth 4124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0 ≤
((𝐹‘𝑧) + (𝐺‘𝑧)) ∧ (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 219 | 176, 215,
218 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 220 | 219 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → (((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 221 | 220 | adantld 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 222 | 221 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) ∧ ¬ (𝑔‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 223 | 157, 160,
175, 222 | ifbothda 4123 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑓‘𝑧) = 0) → ((0 ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 224 | 155 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) ↔ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 225 | 224 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 =
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
| 226 | 158 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) ↔ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 227 | 226 | imbi1d 331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔‘𝑧) + 𝑑) = if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) → (((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) ↔ ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))))) |
| 228 | 172 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 229 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑔‘𝑧) = 0 → ((𝑓‘𝑧) + (𝑔‘𝑧)) = ((𝑓‘𝑧) + 0)) |
| 230 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑓 ∈ dom
∫1) |
| 231 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
| 232 | 231 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑧 ∈ ℝ)
→ (𝑓‘𝑧) ∈
ℝ) |
| 233 | 230, 232 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
| 234 | 233 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℂ) |
| 235 | 234 | addid1d 10236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + 0) = (𝑓‘𝑧)) |
| 236 | 229, 235 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) → ((𝑓‘𝑧) + (𝑔‘𝑧)) = (𝑓‘𝑧)) |
| 237 | 236 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
| 238 | 237 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
| 239 | 233, 188 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
| 240 | 239 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) |
| 241 | 193 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝐹‘𝑧) ∈ ℝ) |
| 242 | 194 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℝ) |
| 243 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ+) |
| 244 | 243 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → 𝑐 ∈ ℝ) |
| 245 | | min1 12020 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑐) |
| 246 | 198, 199,
245 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑐) |
| 247 | 246 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ≤ 𝑐) |
| 248 | 188, 244,
233, 247 | leadd2dd 10642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑓‘𝑧) + 𝑐)) |
| 249 | 233, 244 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + 𝑐) ∈ ℝ) |
| 250 | | letr 10131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ ∧ ((𝑓‘𝑧) + 𝑐) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → ((((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧))) |
| 251 | 239, 249,
193, 250 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧))) |
| 252 | 248, 251 | mpand 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧))) |
| 253 | 252 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐹‘𝑧)) |
| 254 | 168, 170 | addge01d 10615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (0 ≤ (𝐺‘𝑧) ↔ (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 255 | 79, 254 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 256 | 166, 255 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 257 | 256 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝐹‘𝑧) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 258 | 240, 241,
242, 253, 257 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 259 | 258 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → ((𝑓‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 260 | 238, 259 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 261 | 228, 260,
218 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 262 | 261 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (𝑔‘𝑧) = 0) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 263 | 262 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 264 | 263 | adantrd 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) ∧ (𝑔‘𝑧) = 0) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ 0 ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 265 | 172 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → 0 ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 266 | 188 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℂ) |
| 267 | 234, 182,
266 | addassd 10062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
| 268 | 267 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
| 269 | 233, 243 | ltaddrpd 11905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) < ((𝑓‘𝑧) + 𝑐)) |
| 270 | 233, 249,
269 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑐)) |
| 271 | | letr 10131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓‘𝑧) ∈ ℝ ∧ ((𝑓‘𝑧) + 𝑐) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → (((𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 272 | 233, 249,
193, 271 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑐) ∧ ((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 273 | 270, 272 | mpand 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 274 | | le2add 10510 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓‘𝑧) ∈ ℝ ∧ ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ ℝ) ∧ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ)) → (((𝑓‘𝑧) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧)) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 275 | 233, 189,
193, 191, 274 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ (𝐺‘𝑧)) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 276 | 273, 207,
275 | syl2and 500 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 277 | 276 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → ((𝑓‘𝑧) + ((𝑔‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 278 | 268, 277 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 279 | 265, 278,
218 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ (((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧))) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧))) |
| 280 | 279 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 281 | 280 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) ∧ ¬ (𝑔‘𝑧) = 0) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ ((𝑔‘𝑧) + 𝑑) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 282 | 225, 227,
264, 281 | ifbothda 4123 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑐 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+))
∧ 𝑧 ∈ ℝ)
∧ ¬ (𝑓‘𝑧) = 0) → ((((𝑓‘𝑧) + 𝑐) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 283 | 151, 154,
223, 282 | ifbothda 4123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 284 | 283 | ralimdva 2962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (∀𝑧 ∈ ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) → ∀𝑧 ∈ ℝ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 285 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓‘𝑧) + 𝑐) ∈ V |
| 286 | 21, 285 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ∈ V |
| 287 | 286 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ∈ V) |
| 288 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) = (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)))) |
| 289 | 20, 287, 14, 288, 24 | ofrfval2 6915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧))) |
| 290 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔‘𝑧) + 𝑑) ∈ V |
| 291 | 21, 290 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ∈ V |
| 292 | 291 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ∈ V) |
| 293 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) = (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)))) |
| 294 | 20, 292, 76, 293, 81 | ofrfval2 6915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ↔ ∀𝑧 ∈ ℝ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
| 295 | 289, 294 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) ↔ (∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 296 | | r19.26 3064 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑧 ∈
ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)) ↔ (∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ ∀𝑧 ∈ ℝ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧))) |
| 297 | 295, 296 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 298 | 297 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) ↔ ∀𝑧 ∈ ℝ (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐)) ≤ (𝐹‘𝑧) ∧ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑)) ≤ (𝐺‘𝑧)))) |
| 299 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → ℝ ∈ V) |
| 300 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) ∈ V |
| 301 | 21, 300 | ifex 4156 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ∈ V |
| 302 | 301 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ∈ V) |
| 303 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ V) |
| 304 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) |
| 305 | 231, 304 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 Fn
ℝ) |
| 306 | 305 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
Fn ℝ) |
| 307 | 306 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑓 Fn ℝ) |
| 308 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑔:ℝ⟶ℝ →
𝑔 Fn
ℝ) |
| 309 | 179, 308 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 Fn
ℝ) |
| 310 | 309 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔
Fn ℝ) |
| 311 | 310 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → 𝑔 Fn ℝ) |
| 312 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) = (𝑓‘𝑧)) |
| 313 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) = (𝑔‘𝑧)) |
| 314 | 307, 311,
299, 299, 133, 312, 313 | ofval 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → ((𝑓 ∘𝑓 + 𝑔)‘𝑧) = ((𝑓‘𝑧) + (𝑔‘𝑧))) |
| 315 | 314 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓 ∘𝑓 + 𝑔)‘𝑧) = 0 ↔ ((𝑓‘𝑧) + (𝑔‘𝑧)) = 0)) |
| 316 | 314 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)) = (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
| 317 | 315, 316 | ifbieq2d 4111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ 𝑧 ∈ ℝ) → if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) = if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
| 318 | 317 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) = (𝑧 ∈ ℝ ↦ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))))) |
| 319 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:ℝ⟶(0[,)+∞)
→ 𝐹 Fn
ℝ) |
| 320 | 13, 319 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 321 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:ℝ⟶(0[,)+∞)
→ 𝐺 Fn
ℝ) |
| 322 | 75, 321 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐺 Fn ℝ) |
| 323 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
| 324 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
| 325 | 320, 322,
20, 20, 133, 323, 324 | offval 6904 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 326 | 325 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 327 | 299, 302,
303, 318, 326 | ofrfval2 6915 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → ((𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ↔ ∀𝑧 ∈ ℝ if(((𝑓‘𝑧) + (𝑔‘𝑧)) = 0, 0, (((𝑓‘𝑧) + (𝑔‘𝑧)) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) ≤ ((𝐹‘𝑧) + (𝐺‘𝑧)))) |
| 328 | 284, 298,
327 | 3imtr4d 283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 329 | 328 | imp 445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺)) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺)) |
| 330 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦) = (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))) |
| 331 | 330 | ifeq2d 4105 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → if(((𝑓 ∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦)) = if(((𝑓 ∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) |
| 332 | 331 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → (𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑))))) |
| 333 | 332 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = if(𝑐 ≤ 𝑑, 𝑐, 𝑑) → ((𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ↔ (𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 334 | 333 | rspcev 3309 |
. . . . . . . . . . . . . . . . . 18
⊢
((if(𝑐 ≤ 𝑑, 𝑐, 𝑑) ∈ ℝ+ ∧ (𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + if(𝑐 ≤ 𝑑, 𝑐, 𝑑)))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺)) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺)) |
| 335 | 148, 329,
334 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) ∧ ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺)) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺)) |
| 336 | 335 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑐 ∈
ℝ+ ∧ 𝑑
∈ ℝ+)) → (((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 337 | 336 | rexlimdvva 3038 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∃𝑐 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ((𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 338 | 146, 337 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 339 | 338 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺)))) |
| 340 | 339 | imp31 448 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺)) |
| 341 | | oveq12 6659 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 =
(∫1‘𝑓)
∧ 𝑢 =
(∫1‘𝑔)) → (𝑡 + 𝑢) = ((∫1‘𝑓) +
(∫1‘𝑔))) |
| 342 | 341 | ad2ant2l 782 |
. . . . . . . . . . . . . 14
⊢
(((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑡 + 𝑢) = ((∫1‘𝑓) +
(∫1‘𝑔))) |
| 343 | 140, 141 | itg1add 23468 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫1‘(𝑓 ∘𝑓 + 𝑔)) =
((∫1‘𝑓) + (∫1‘𝑔))) |
| 344 | 343 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((∫1‘𝑓) + (∫1‘𝑔)) =
(∫1‘(𝑓
∘𝑓 + 𝑔))) |
| 345 | 344 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫1‘𝑓) + (∫1‘𝑔)) =
(∫1‘(𝑓
∘𝑓 + 𝑔))) |
| 346 | 342, 345 | sylan9eqr 2678 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) → (𝑡 + 𝑢) = (∫1‘(𝑓 ∘𝑓 +
𝑔))) |
| 347 | | eqtr 2641 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (𝑡 + 𝑢) ∧ (𝑡 + 𝑢) = (∫1‘(𝑓 ∘𝑓 +
𝑔))) → 𝑠 =
(∫1‘(𝑓
∘𝑓 + 𝑔))) |
| 348 | 347 | ancoms 469 |
. . . . . . . . . . . . 13
⊢ (((𝑡 + 𝑢) = (∫1‘(𝑓 ∘𝑓 +
𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓 ∘𝑓 +
𝑔))) |
| 349 | 346, 348 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (∫1‘(𝑓 ∘𝑓 +
𝑔))) |
| 350 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → (ℎ‘𝑧) = ((𝑓 ∘𝑓 + 𝑔)‘𝑧)) |
| 351 | 350 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → ((ℎ‘𝑧) = 0 ↔ ((𝑓 ∘𝑓 + 𝑔)‘𝑧) = 0)) |
| 352 | 350 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → ((ℎ‘𝑧) + 𝑦) = (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦)) |
| 353 | 351, 352 | ifbieq2d 4111 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦)) = if(((𝑓 ∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) |
| 354 | 353 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(((𝑓 ∘𝑓 +
𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦)))) |
| 355 | 354 | breq1d 4663 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → ((𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ↔ (𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 356 | 355 | rexbidv 3052 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺))) |
| 357 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) →
(∫1‘ℎ)
= (∫1‘(𝑓 ∘𝑓 + 𝑔))) |
| 358 | 357 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → (𝑠 = (∫1‘ℎ) ↔ 𝑠 = (∫1‘(𝑓 ∘𝑓 +
𝑔)))) |
| 359 | 356, 358 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑓 ∘𝑓 + 𝑔) → ((∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘(𝑓 ∘𝑓 +
𝑔))))) |
| 360 | 359 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘𝑓 +
𝑔) ∈ dom
∫1 ∧ (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if(((𝑓
∘𝑓 + 𝑔)‘𝑧) = 0, 0, (((𝑓 ∘𝑓 + 𝑔)‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘(𝑓 ∘𝑓 +
𝑔)))) → ∃ℎ ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))) |
| 361 | 143, 340,
349, 360 | syl12anc 1324 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))) |
| 362 | 361 | exp31 630 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (((∃𝑐 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))))) |
| 363 | 362 | rexlimdvva 3038 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) → (𝑠 = (𝑡 + 𝑢) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))))) |
| 364 | 363 | impd 447 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ)))) |
| 365 | 364 | exlimdvv 1862 |
. . . . . . 7
⊢ (𝜑 → (∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) → ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ)))) |
| 366 | 139, 365 | impbid 202 |
. . . . . 6
⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ)) ↔ ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)))) |
| 367 | | eqeq1 2626 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (𝑥 = (∫1‘𝑓) ↔ 𝑡 = (∫1‘𝑓))) |
| 368 | 367 | anbi2d 740 |
. . . . . . . . 9
⊢ (𝑥 = 𝑡 → ((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ (∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)))) |
| 369 | 368 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑥 = 𝑡 → (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)))) |
| 370 | 369 | rexab 3369 |
. . . . . . 7
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢))) |
| 371 | | eqeq1 2626 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥 = (∫1‘𝑔) ↔ 𝑢 = (∫1‘𝑔))) |
| 372 | 371 | anbi2d 740 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → ((∃𝑑 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) |
| 373 | 372 | rexbidv 3052 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) |
| 374 | 373 | rexab 3369 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 375 | 374 | anbi2i 730 |
. . . . . . . . 9
⊢
((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))) |
| 376 | | 19.42v 1918 |
. . . . . . . . 9
⊢
(∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢(∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))) |
| 377 | | reeanv 3107 |
. . . . . . . . . . . 12
⊢
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ↔ (∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)))) |
| 378 | 377 | anbi1i 731 |
. . . . . . . . . . 11
⊢
((∃𝑓 ∈
dom ∫1∃𝑔 ∈ dom ∫1((∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ ((∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 379 | | anass 681 |
. . . . . . . . . . 11
⊢
(((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢)) ↔ (∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢)))) |
| 380 | 378, 379 | bitr2i 265 |
. . . . . . . . . 10
⊢
((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ (∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 381 | 380 | exbii 1774 |
. . . . . . . . 9
⊢
(∃𝑢(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔)) ∧ 𝑠 = (𝑡 + 𝑢))) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 382 | 375, 376,
381 | 3bitr2i 288 |
. . . . . . . 8
⊢
((∃𝑓 ∈
dom ∫1(∃𝑐 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 383 | 382 | exbii 1774 |
. . . . . . 7
⊢
(∃𝑡(∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ ∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) ↔ ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 384 | 370, 383 | bitri 264 |
. . . . . 6
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡∃𝑢(∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1((∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑡 = (∫1‘𝑓)) ∧ (∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑢 = (∫1‘𝑔))) ∧ 𝑠 = (𝑡 + 𝑢))) |
| 385 | 366, 384 | syl6bbr 278 |
. . . . 5
⊢ (𝜑 → (∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ)) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢))) |
| 386 | 385 | abbidv 2741 |
. . . 4
⊢ (𝜑 → {𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))} = {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}) |
| 387 | 386 | supeq1d 8352 |
. . 3
⊢ (𝜑 → sup({𝑠 ∣ ∃ℎ ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((ℎ‘𝑧) = 0, 0, ((ℎ‘𝑧) + 𝑦))) ∘𝑟 ≤ (𝐹 ∘𝑓 +
𝐺) ∧ 𝑠 = (∫1‘ℎ))}, ℝ*, < )
= sup({𝑠 ∣
∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, <
)) |
| 388 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 = (𝑡 + 𝑢)) |
| 389 | 6 | sseli 3599 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → 𝑡 ∈ ℝ) |
| 390 | 389 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑡 ∈ ℝ) |
| 391 | 73 | sseli 3599 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → 𝑢 ∈ ℝ) |
| 392 | 391 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑢 ∈ ℝ) |
| 393 | 390, 392 | readdcld 10069 |
. . . . . . . . 9
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ∈ ℝ) |
| 394 | 388, 393 | eqeltrd 2701 |
. . . . . . . 8
⊢ (((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) ∧ 𝑠 = (𝑡 + 𝑢)) → 𝑠 ∈ ℝ) |
| 395 | 394 | ex 450 |
. . . . . . 7
⊢ ((𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → (𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ)) |
| 396 | 395 | rexlimivv 3036 |
. . . . . 6
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) → 𝑠 ∈ ℝ) |
| 397 | 396 | abssi 3677 |
. . . . 5
⊢ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ |
| 398 | 397 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ) |
| 399 | 162 | eqcomi 2631 |
. . . . . . . 8
⊢ 0 = (0 +
0) |
| 400 | | rspceov 6692 |
. . . . . . . 8
⊢ ((0
∈ {𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ∧ 0 = (0 + 0)) →
∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢)) |
| 401 | 399, 400 | mp3an3 1413 |
. . . . . . 7
⊢ ((0
∈ {𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 0 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢)) |
| 402 | 48, 103, 401 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢)) |
| 403 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑠 = 0 → (𝑠 = (𝑡 + 𝑢) ↔ 0 = (𝑡 + 𝑢))) |
| 404 | 403 | 2rexbidv 3057 |
. . . . . . 7
⊢ (𝑠 = 0 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢))) |
| 405 | 21, 404 | spcev 3300 |
. . . . . 6
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}0 = (𝑡 + 𝑢) → ∃𝑠∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) |
| 406 | 402, 405 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑠∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) |
| 407 | | abn0 3954 |
. . . . 5
⊢ ({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ↔ ∃𝑠∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)) |
| 408 | 406, 407 | sylibr 224 |
. . . 4
⊢ (𝜑 → {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅) |
| 409 | 58, 112 | readdcld 10069 |
. . . . 5
⊢ (𝜑 → (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) ∈ ℝ) |
| 410 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 = (𝑡 + 𝑢)) |
| 411 | 389 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑡 ∈ ℝ) |
| 412 | 391 | ad2antll 765 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑢 ∈ ℝ) |
| 413 | 58 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
∈ ℝ) |
| 414 | 112 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
∈ ℝ) |
| 415 | | supxrub 12154 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ⊆ ℝ*
∧ 𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 416 | 60, 415 | mpan 706 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 417 | 416 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑡 ≤ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 418 | | supxrub 12154 |
. . . . . . . . . . . . 13
⊢ (({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ*
∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 419 | 113, 418 | mpan 706 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))} → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 420 | 419 | ad2antll 765 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → 𝑢 ≤ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) |
| 421 | 411, 412,
413, 414, 417, 420 | le2addd 10646 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
| 422 | 421 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → (𝑡 + 𝑢) ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
| 423 | 410, 422 | eqbrtrd 4675 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) ∧ 𝑏 = (𝑡 + 𝑢)) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))) |
| 424 | 423 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ∧ 𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))})) → (𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
| 425 | 424 | rexlimdvva 3038 |
. . . . . 6
⊢ (𝜑 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
| 426 | 425 | alrimiv 1855 |
. . . . 5
⊢ (𝜑 → ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
| 427 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → (𝑏 ≤ 𝑎 ↔ 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
| 428 | 427 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → (∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎 ↔ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
| 429 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑠 = 𝑏 → (𝑠 = (𝑡 + 𝑢) ↔ 𝑏 = (𝑡 + 𝑢))) |
| 430 | 429 | 2rexbidv 3057 |
. . . . . . . 8
⊢ (𝑠 = 𝑏 → (∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢) ↔ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢))) |
| 431 | 430 | ralab 3367 |
. . . . . . 7
⊢
(∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) |
| 432 | 428, 431 | syl6bb 276 |
. . . . . 6
⊢ (𝑎 = (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) → (∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎 ↔ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
))))) |
| 433 | 432 | rspcev 3309 |
. . . . 5
⊢
(((sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(∃𝑐
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)) ∈ ℝ ∧ ∀𝑏(∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑏 = (𝑡 + 𝑢) → 𝑏 ≤ (sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
+ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑑
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
)))) → ∃𝑎 ∈
ℝ ∀𝑏 ∈
{𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎) |
| 434 | 409, 426,
433 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎) |
| 435 | | supxrre 12157 |
. . . 4
⊢ (({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ⊆ ℝ ∧ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)} ≠ ∅ ∧ ∃𝑎 ∈ ℝ ∀𝑏 ∈ {𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}𝑏 ≤ 𝑎) → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
| 436 | 398, 408,
434, 435 | syl3anc 1326 |
. . 3
⊢ (𝜑 → sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ*, < ) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
| 437 | 137, 387,
436 | 3eqtrd 2660 |
. 2
⊢ (𝜑 →
(∫2‘(𝐹
∘𝑓 + 𝐺)) = sup({𝑠 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(∃𝑐 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑐))) ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}∃𝑢 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑑 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑑))) ∘𝑟 ≤ 𝐺 ∧ 𝑥 = (∫1‘𝑔))}𝑠 = (𝑡 + 𝑢)}, ℝ, < )) |
| 438 | 122, 129,
437 | 3eqtr4rd 2667 |
1
⊢ (𝜑 →
(∫2‘(𝐹
∘𝑓 + 𝐺)) = ((∫2‘𝐹) +
(∫2‘𝐺))) |