Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem4 Structured version   Visualization version   Unicode version

Theorem ftc1anclem4 33488
Description: Lemma for ftc1anc 33493. (Contributed by Brendan Leahy, 17-Jun-2018.)
Assertion
Ref Expression
ftc1anclem4  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) )  e.  RR )
Distinct variable groups:    t, F    t, G

Proof of Theorem ftc1anclem4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( G : RR --> RR  /\  t  e.  RR )  ->  ( G `  t
)  e.  RR )
21recnd 10068 . . . . . . . . 9  |-  ( ( G : RR --> RR  /\  t  e.  RR )  ->  ( G `  t
)  e.  CC )
3 i1ff 23443 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
43ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  t  e.  RR )  ->  ( F `  t )  e.  RR )
54recnd 10068 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  t  e.  RR )  ->  ( F `  t )  e.  CC )
6 subcl 10280 . . . . . . . . 9  |-  ( ( ( G `  t
)  e.  CC  /\  ( F `  t )  e.  CC )  -> 
( ( G `  t )  -  ( F `  t )
)  e.  CC )
72, 5, 6syl2anr 495 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  t  e.  RR )  /\  ( G : RR
--> RR  /\  t  e.  RR ) )  -> 
( ( G `  t )  -  ( F `  t )
)  e.  CC )
87anandirs 874 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  (
( G `  t
)  -  ( F `
 t ) )  e.  CC )
98abscld 14175 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( ( G `
 t )  -  ( F `  t ) ) )  e.  RR )
109rexrd 10089 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( ( G `
 t )  -  ( F `  t ) ) )  e.  RR* )
118absge0d 14183 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  0  <_  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) ) )
12 elxrge0 12281 . . . . 5  |-  ( ( abs `  ( ( G `  t )  -  ( F `  t ) ) )  e.  ( 0 [,] +oo )  <->  ( ( abs `  ( ( G `  t )  -  ( F `  t )
) )  e.  RR*  /\  0  <_  ( abs `  ( ( G `  t )  -  ( F `  t )
) ) ) )
1310, 11, 12sylanbrc 698 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( ( G `
 t )  -  ( F `  t ) ) )  e.  ( 0 [,] +oo )
)
14 eqid 2622 . . . 4  |-  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t )
) ) )  =  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) )
1513, 14fmptd 6385 . . 3  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) ) ) : RR --> ( 0 [,] +oo ) )
16153adant2 1080 . 2  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t )
) ) ) : RR --> ( 0 [,] +oo ) )
17 reex 10027 . . . . . . 7  |-  RR  e.  _V
1817a1i 11 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  RR  e.  _V )
19 fvexd 6203 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  L^1  /\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( G `  t ) )  e. 
_V )
20 fvexd 6203 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G  e.  L^1  /\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( F `  t ) )  e. 
_V )
21 eqidd 2623 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) )  =  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) ) )
22 eqidd 2623 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) )  =  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) ) )
2318, 19, 20, 21, 22offval2 6914 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) )  oF  +  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) ) )  =  ( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) )
2423fveq2d 6195 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( ( t  e.  RR  |->  ( abs `  ( G `  t )
) )  oF  +  ( t  e.  RR  |->  ( abs `  ( F `  t )
) ) ) )  =  ( S.2 `  (
t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) ) )
25 id 22 . . . . . . . . . 10  |-  ( G : RR --> RR  ->  G : RR --> RR )
2625feqmptd 6249 . . . . . . . . 9  |-  ( G : RR --> RR  ->  G  =  ( t  e.  RR  |->  ( G `  t ) ) )
27 absf 14077 . . . . . . . . . . 11  |-  abs : CC
--> RR
2827a1i 11 . . . . . . . . . 10  |-  ( G : RR --> RR  ->  abs
: CC --> RR )
2928feqmptd 6249 . . . . . . . . 9  |-  ( G : RR --> RR  ->  abs  =  ( x  e.  CC  |->  ( abs `  x
) ) )
30 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( G `  t )  ->  ( abs `  x )  =  ( abs `  ( G `  t )
) )
312, 26, 29, 30fmptco 6396 . . . . . . . 8  |-  ( G : RR --> RR  ->  ( abs  o.  G )  =  ( t  e.  RR  |->  ( abs `  ( G `  t )
) ) )
3231adantl 482 . . . . . . 7  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( abs 
o.  G )  =  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) ) )
33 iblmbf 23534 . . . . . . . . 9  |-  ( G  e.  L^1  ->  G  e. MblFn )
34 ftc1anclem1 33485 . . . . . . . . 9  |-  ( ( G : RR --> RR  /\  G  e. MblFn )  ->  ( abs  o.  G )  e. MblFn )
3533, 34sylan2 491 . . . . . . . 8  |-  ( ( G : RR --> RR  /\  G  e.  L^1
)  ->  ( abs  o.  G )  e. MblFn )
3635ancoms 469 . . . . . . 7  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( abs 
o.  G )  e. MblFn
)
3732, 36eqeltrrd 2702 . . . . . 6  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) )  e. MblFn
)
38373adant1 1079 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) )  e. MblFn
)
392abscld 14175 . . . . . . . 8  |-  ( ( G : RR --> RR  /\  t  e.  RR )  ->  ( abs `  ( G `  t )
)  e.  RR )
402absge0d 14183 . . . . . . . 8  |-  ( ( G : RR --> RR  /\  t  e.  RR )  ->  0  <_  ( abs `  ( G `  t
) ) )
41 elrege0 12278 . . . . . . . 8  |-  ( ( abs `  ( G `
 t ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( G `  t
) )  e.  RR  /\  0  <_  ( abs `  ( G `  t
) ) ) )
4239, 40, 41sylanbrc 698 . . . . . . 7  |-  ( ( G : RR --> RR  /\  t  e.  RR )  ->  ( abs `  ( G `  t )
)  e.  ( 0 [,) +oo ) )
43 eqid 2622 . . . . . . 7  |-  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) )  =  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) )
4442, 43fmptd 6385 . . . . . 6  |-  ( G : RR --> RR  ->  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) ) : RR --> ( 0 [,) +oo ) )
45443ad2ant3 1084 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) ) : RR --> ( 0 [,) +oo ) )
46 iftrue 4092 . . . . . . . . 9  |-  ( t  e.  RR  ->  if ( t  e.  RR ,  ( abs `  ( G `  t )
) ,  0 )  =  ( abs `  ( G `  t )
) )
4746mpteq2ia 4740 . . . . . . . 8  |-  ( t  e.  RR  |->  if ( t  e.  RR , 
( abs `  ( G `  t )
) ,  0 ) )  =  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) )
4847fveq2i 6194 . . . . . . 7  |-  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( G `  t )
) ,  0 ) ) )  =  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) ) )
491adantll 750 . . . . . . . . . 10  |-  ( ( ( G  e.  L^1  /\  G : RR --> RR )  /\  t  e.  RR )  ->  ( G `  t )  e.  RR )
50 simpr 477 . . . . . . . . . . . 12  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  G : RR
--> RR )
5150feqmptd 6249 . . . . . . . . . . 11  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  G  =  ( t  e.  RR  |->  ( G `  t ) ) )
52 simpl 473 . . . . . . . . . . 11  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  G  e.  L^1 )
5351, 52eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( G `
 t ) )  e.  L^1 )
5449, 53, 37iblabsnc 33474 . . . . . . . . 9  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) )  e.  L^1 )
5539adantll 750 . . . . . . . . . 10  |-  ( ( ( G  e.  L^1  /\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( G `  t ) )  e.  RR )
5640adantll 750 . . . . . . . . . 10  |-  ( ( ( G  e.  L^1  /\  G : RR --> RR )  /\  t  e.  RR )  ->  0  <_  ( abs `  ( G `  t )
) )
5755, 56iblpos 23559 . . . . . . . . 9  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) )  e.  L^1  <-> 
( ( t  e.  RR  |->  ( abs `  ( G `  t )
) )  e. MblFn  /\  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( G `
 t ) ) ,  0 ) ) )  e.  RR ) ) )
5854, 57mpbid 222 . . . . . . . 8  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) )  e. MblFn  /\  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( G `
 t ) ) ,  0 ) ) )  e.  RR ) )
5958simprd 479 . . . . . . 7  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( G `  t )
) ,  0 ) ) )  e.  RR )
6048, 59syl5eqelr 2706 . . . . . 6  |-  ( ( G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) ) )  e.  RR )
61603adant1 1079 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) ) )  e.  RR )
625abscld 14175 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  t  e.  RR )  ->  ( abs `  ( F `  t )
)  e.  RR )
635absge0d 14183 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  t  e.  RR )  ->  0  <_  ( abs `  ( F `  t ) ) )
64 elrege0 12278 . . . . . . . 8  |-  ( ( abs `  ( F `
 t ) )  e.  ( 0 [,) +oo )  <->  ( ( abs `  ( F `  t
) )  e.  RR  /\  0  <_  ( abs `  ( F `  t
) ) ) )
6562, 63, 64sylanbrc 698 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  t  e.  RR )  ->  ( abs `  ( F `  t )
)  e.  ( 0 [,) +oo ) )
66 eqid 2622 . . . . . . 7  |-  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) )  =  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) )
6765, 66fmptd 6385 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) ) : RR --> ( 0 [,) +oo ) )
68673ad2ant1 1082 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) ) : RR --> ( 0 [,) +oo ) )
69 iftrue 4092 . . . . . . . . 9  |-  ( t  e.  RR  ->  if ( t  e.  RR ,  ( abs `  ( F `  t )
) ,  0 )  =  ( abs `  ( F `  t )
) )
7069mpteq2ia 4740 . . . . . . . 8  |-  ( t  e.  RR  |->  if ( t  e.  RR , 
( abs `  ( F `  t )
) ,  0 ) )  =  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) )
7170fveq2i 6194 . . . . . . 7  |-  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( F `  t )
) ,  0 ) ) )  =  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) ) )
723feqmptd 6249 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  F  =  ( t  e.  RR  |->  ( F `  t ) ) )
73 i1fibl 23574 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  F  e.  L^1 )
7472, 73eqeltrrd 2702 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  ( t  e.  RR  |->  ( F `  t ) )  e.  L^1 )
7527a1i 11 . . . . . . . . . . . . 13  |-  ( F  e.  dom  S.1  ->  abs
: CC --> RR )
7675feqmptd 6249 . . . . . . . . . . . 12  |-  ( F  e.  dom  S.1  ->  abs  =  ( x  e.  CC  |->  ( abs `  x
) ) )
77 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  ( F `  t )  ->  ( abs `  x )  =  ( abs `  ( F `  t )
) )
785, 72, 76, 77fmptco 6396 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( abs  o.  F )  =  ( t  e.  RR  |->  ( abs `  ( F `  t )
) ) )
79 i1fmbf 23442 . . . . . . . . . . . 12  |-  ( F  e.  dom  S.1  ->  F  e. MblFn )
80 ftc1anclem1 33485 . . . . . . . . . . . 12  |-  ( ( F : RR --> RR  /\  F  e. MblFn )  ->  ( abs  o.  F )  e. MblFn )
813, 79, 80syl2anc 693 . . . . . . . . . . 11  |-  ( F  e.  dom  S.1  ->  ( abs  o.  F )  e. MblFn )
8278, 81eqeltrrd 2702 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) )  e. MblFn )
834, 74, 82iblabsnc 33474 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) )  e.  L^1 )
8462, 63iblpos 23559 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) )  e.  L^1  <-> 
( ( t  e.  RR  |->  ( abs `  ( F `  t )
) )  e. MblFn  /\  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( F `
 t ) ) ,  0 ) ) )  e.  RR ) ) )
8583, 84mpbid 222 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) )  e. MblFn  /\  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR ,  ( abs `  ( F `
 t ) ) ,  0 ) ) )  e.  RR ) )
8685simprd 479 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  RR , 
( abs `  ( F `  t )
) ,  0 ) ) )  e.  RR )
8771, 86syl5eqelr 2706 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) ) )  e.  RR )
88873ad2ant1 1082 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( F `
 t ) ) ) )  e.  RR )
8938, 45, 61, 68, 88itg2addnc 33464 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( ( t  e.  RR  |->  ( abs `  ( G `  t )
) )  oF  +  ( t  e.  RR  |->  ( abs `  ( F `  t )
) ) ) )  =  ( ( S.2 `  ( t  e.  RR  |->  ( abs `  ( G `
 t ) ) ) )  +  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( F `  t
) ) ) ) ) )
9024, 89eqtr3d 2658 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) )  =  ( ( S.2 `  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) ) )  +  ( S.2 `  (
t  e.  RR  |->  ( abs `  ( F `
 t ) ) ) ) ) )
9161, 88readdcld 10069 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( ( S.2 `  ( t  e.  RR  |->  ( abs `  ( G `  t
) ) ) )  +  ( S.2 `  (
t  e.  RR  |->  ( abs `  ( F `
 t ) ) ) ) )  e.  RR )
9290, 91eqeltrd 2701 . 2  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) )  e.  RR )
93 readdcl 10019 . . . . . . . . 9  |-  ( ( ( abs `  ( G `  t )
)  e.  RR  /\  ( abs `  ( F `
 t ) )  e.  RR )  -> 
( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) )  e.  RR )
9439, 62, 93syl2anr 495 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  t  e.  RR )  /\  ( G : RR
--> RR  /\  t  e.  RR ) )  -> 
( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) )  e.  RR )
9594anandirs 874 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  (
( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) )  e.  RR )
9695rexrd 10089 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  (
( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) )  e. 
RR* )
9739adantll 750 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( G `  t ) )  e.  RR )
9862adantlr 751 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( F `  t ) )  e.  RR )
9940adantll 750 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  0  <_  ( abs `  ( G `  t )
) )
10063adantlr 751 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  0  <_  ( abs `  ( F `  t )
) )
10197, 98, 99, 100addge0d 10603 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  0  <_  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) )
102 elxrge0 12281 . . . . . 6  |-  ( ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) )  e.  ( 0 [,] +oo ) 
<->  ( ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) )  e.  RR*  /\  0  <_  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) )
10396, 101, 102sylanbrc 698 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  (
( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) )  e.  ( 0 [,] +oo ) )
104 eqid 2622 . . . . 5  |-  ( t  e.  RR  |->  ( ( abs `  ( G `
 t ) )  +  ( abs `  ( F `  t )
) ) )  =  ( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) )
105103, 104fmptd 6385 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) ) : RR --> ( 0 [,] +oo ) )
1061053adant2 1080 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( ( abs `  ( G `
 t ) )  +  ( abs `  ( F `  t )
) ) ) : RR --> ( 0 [,] +oo ) )
107 abs2dif2 14073 . . . . . . . 8  |-  ( ( ( G `  t
)  e.  CC  /\  ( F `  t )  e.  CC )  -> 
( abs `  (
( G `  t
)  -  ( F `
 t ) ) )  <_  ( ( abs `  ( G `  t ) )  +  ( abs `  ( F `  t )
) ) )
1082, 5, 107syl2anr 495 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  t  e.  RR )  /\  ( G : RR
--> RR  /\  t  e.  RR ) )  -> 
( abs `  (
( G `  t
)  -  ( F `
 t ) ) )  <_  ( ( abs `  ( G `  t ) )  +  ( abs `  ( F `  t )
) ) )
109108anandirs 874 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  G : RR --> RR )  /\  t  e.  RR )  ->  ( abs `  ( ( G `
 t )  -  ( F `  t ) ) )  <_  (
( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) )
110109ralrimiva 2966 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  A. t  e.  RR  ( abs `  ( ( G `  t )  -  ( F `  t ) ) )  <_  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) )
11117a1i 11 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  RR  e.  _V )
112 eqidd 2623 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) ) )  =  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) )
113 eqidd 2623 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) )  =  ( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) )
114111, 9, 95, 112, 113ofrfval2 6915 . . . . 5  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  ( ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t )
) ) )  oR  <_  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) )  <->  A. t  e.  RR  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) )  <_  ( ( abs `  ( G `  t ) )  +  ( abs `  ( F `  t )
) ) ) )
115110, 114mpbird 247 . . . 4  |-  ( ( F  e.  dom  S.1  /\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) ) )  oR  <_  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) ) )
1161153adant2 1080 . . 3  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t )
) ) )  oR  <_  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) ) )
117 itg2le 23506 . . 3  |-  ( ( ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) : RR --> ( 0 [,] +oo )  /\  ( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) : RR --> ( 0 [,] +oo )  /\  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) )  oR  <_ 
( t  e.  RR  |->  ( ( abs `  ( G `  t )
)  +  ( abs `  ( F `  t
) ) ) ) )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) )  <_  ( S.2 `  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) ) ) )
11816, 106, 116, 117syl3anc 1326 . 2  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) )  <_  ( S.2 `  ( t  e.  RR  |->  ( ( abs `  ( G `  t
) )  +  ( abs `  ( F `
 t ) ) ) ) ) )
119 itg2lecl 23505 . 2  |-  ( ( ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) : RR --> ( 0 [,] +oo )  /\  ( S.2 `  ( t  e.  RR  |->  ( ( abs `  ( G `
 t ) )  +  ( abs `  ( F `  t )
) ) ) )  e.  RR  /\  ( S.2 `  ( t  e.  RR  |->  ( abs `  (
( G `  t
)  -  ( F `
 t ) ) ) ) )  <_ 
( S.2 `  ( t  e.  RR  |->  ( ( abs `  ( G `
 t ) )  +  ( abs `  ( F `  t )
) ) ) ) )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) )  e.  RR )
12016, 92, 118, 119syl3anc 1326 1  |-  ( ( F  e.  dom  S.1  /\  G  e.  L^1 
/\  G : RR --> RR )  ->  ( S.2 `  ( t  e.  RR  |->  ( abs `  ( ( G `  t )  -  ( F `  t ) ) ) ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    oRcofr 6896   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   RR*cxr 10073    <_ cle 10075    - cmin 10266   [,)cico 12177   [,]cicc 12178   abscabs 13974  MblFncmbf 23383   S.1citg1 23384   S.2citg2 23385   L^1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437
This theorem is referenced by:  ftc1anclem5  33489  ftc1anclem6  33490
  Copyright terms: Public domain W3C validator