| Step | Hyp | Ref
| Expression |
| 1 | | mdegaddle.y |
. . . . . . . 8
⊢ 𝑌 = (𝐼 mPoly 𝑅) |
| 2 | | mdegmulle2.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑌) |
| 3 | | eqid 2622 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mdegmulle2.t |
. . . . . . . 8
⊢ · =
(.r‘𝑌) |
| 5 | | mdegmullem.a |
. . . . . . . 8
⊢ 𝐴 = {𝑎 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑎 “ ℕ) ∈
Fin} |
| 6 | | mdegmulle2.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 7 | | mdegmulle2.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mplmul 19443 |
. . . . . . 7
⊢ (𝜑 → (𝐹 · 𝐺) = (𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))))))) |
| 9 | 8 | fveq1d 6193 |
. . . . . 6
⊢ (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))))))‘𝑥)) |
| 10 | 9 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))))))‘𝑥)) |
| 11 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → (𝑒 ∘𝑟 ≤ 𝑐 ↔ 𝑒 ∘𝑟 ≤ 𝑥)) |
| 12 | 11 | rabbidv 3189 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} = {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) |
| 13 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑥 → (𝑐 ∘𝑓 − 𝑑) = (𝑥 ∘𝑓 − 𝑑)) |
| 14 | 13 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → (𝐺‘(𝑐 ∘𝑓 − 𝑑)) = (𝐺‘(𝑥 ∘𝑓 − 𝑑))) |
| 15 | 14 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))) = ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑)))) |
| 16 | 12, 15 | mpteq12dv 4733 |
. . . . . . . 8
⊢ (𝑐 = 𝑥 → (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑)))) = (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))))) |
| 17 | 16 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑)))))) |
| 18 | | eqid 2622 |
. . . . . . 7
⊢ (𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑)))))) = (𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑)))))) |
| 19 | | ovex 6678 |
. . . . . . 7
⊢ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))))) ∈ V |
| 20 | 17, 18, 19 | fvmpt 6282 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑)))))) |
| 21 | 20 | ad2antrl 764 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘𝑓 − 𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑)))))) |
| 22 | | mdegaddle.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| 23 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 24 | | mdegmullem.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (𝑏 ∈ 𝐴 ↦ (ℂfld
Σg 𝑏)) |
| 25 | 6 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → 𝐹 ∈ 𝐵) |
| 26 | | elrabi 3359 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} → 𝑑 ∈ 𝐴) |
| 27 | 26 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝑑 ∈ 𝐴) |
| 28 | 27 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → 𝑑 ∈ 𝐴) |
| 29 | 22, 1, 2 | mdegxrcl 23827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
| 30 | 6, 29 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
| 31 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐷‘𝐹) ∈
ℝ*) |
| 32 | | nn0ssre 11296 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ⊆ ℝ |
| 33 | | ressxr 10083 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
⊆ ℝ* |
| 34 | 32, 33 | sstri 3612 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ⊆ ℝ* |
| 35 | | mdegmulle2.j1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 36 | 34, 35 | sseldi 3601 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐽 ∈
ℝ*) |
| 37 | 36 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐽 ∈
ℝ*) |
| 38 | | mdegaddle.i |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 39 | 5, 24 | tdeglem1 23818 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ 𝑉 → 𝐻:𝐴⟶ℕ0) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐻:𝐴⟶ℕ0) |
| 41 | 40 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐻:𝐴⟶ℕ0) |
| 42 | 41, 27 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘𝑑) ∈
ℕ0) |
| 43 | 34, 42 | sseldi 3601 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘𝑑) ∈
ℝ*) |
| 44 | 31, 37, 43 | 3jca 1242 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐷‘𝐹) ∈ ℝ* ∧ 𝐽 ∈ ℝ*
∧ (𝐻‘𝑑) ∈
ℝ*)) |
| 45 | 44 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐷‘𝐹) ∈ ℝ* ∧ 𝐽 ∈ ℝ*
∧ (𝐻‘𝑑) ∈
ℝ*)) |
| 46 | | mdegmulle2.j2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) |
| 47 | 46 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐷‘𝐹) ≤ 𝐽) |
| 48 | 47 | anim1i 592 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) ∧ 𝐽 < (𝐻‘𝑑)) → ((𝐷‘𝐹) ≤ 𝐽 ∧ 𝐽 < (𝐻‘𝑑))) |
| 49 | 48 | anasss 679 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐷‘𝐹) ≤ 𝐽 ∧ 𝐽 < (𝐻‘𝑑))) |
| 50 | | xrlelttr 11987 |
. . . . . . . . . . . . . 14
⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ 𝐽 ∈ ℝ*
∧ (𝐻‘𝑑) ∈ ℝ*)
→ (((𝐷‘𝐹) ≤ 𝐽 ∧ 𝐽 < (𝐻‘𝑑)) → (𝐷‘𝐹) < (𝐻‘𝑑))) |
| 51 | 45, 49, 50 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → (𝐷‘𝐹) < (𝐻‘𝑑)) |
| 52 | 22, 1, 2, 23, 5, 24, 25, 28, 51 | mdeglt 23825 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → (𝐹‘𝑑) = (0g‘𝑅)) |
| 53 | 52 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) =
((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑)))) |
| 54 | | mdegaddle.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 55 | 54 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝑅 ∈ Ring) |
| 56 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 57 | 1, 56, 2, 5, 7 | mplelf 19433 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝐴⟶(Base‘𝑅)) |
| 58 | 57 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐺:𝐴⟶(Base‘𝑅)) |
| 59 | | ssrab2 3687 |
. . . . . . . . . . . . . . 15
⊢ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ⊆ 𝐴 |
| 60 | 38 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
| 61 | | simplrl 800 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝑥 ∈ 𝐴) |
| 62 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} = {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} |
| 64 | 5, 63 | psrbagconcl 19373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝑥 ∘𝑓 − 𝑑) ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) |
| 65 | 60, 61, 62, 64 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝑥 ∘𝑓 − 𝑑) ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) |
| 66 | 59, 65 | sseldi 3601 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝑥 ∘𝑓 − 𝑑) ∈ 𝐴) |
| 67 | 58, 66 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐺‘(𝑥 ∘𝑓 − 𝑑)) ∈ (Base‘𝑅)) |
| 68 | 56, 3, 23 | ringlz 18587 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥 ∘𝑓 − 𝑑)) ∈ (Base‘𝑅)) →
((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 69 | 55, 67, 68 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) →
((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 70 | 69 | adantrr 753 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 71 | 53, 70 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 72 | 71 | anassrs 680 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) ∧ 𝐽 < (𝐻‘𝑑)) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 73 | 7 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → 𝐺 ∈ 𝐵) |
| 74 | 66 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → (𝑥 ∘𝑓 − 𝑑) ∈ 𝐴) |
| 75 | 22, 1, 2 | mdegxrcl 23827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
| 76 | 7, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
| 77 | 76 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐷‘𝐺) ∈
ℝ*) |
| 78 | | mdegmulle2.k1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 79 | 34, 78 | sseldi 3601 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈
ℝ*) |
| 80 | 79 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐾 ∈
ℝ*) |
| 81 | 41, 66 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ∈
ℕ0) |
| 82 | 34, 81 | sseldi 3601 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ∈
ℝ*) |
| 83 | 77, 80, 82 | 3jca 1242 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐷‘𝐺) ∈ ℝ* ∧ 𝐾 ∈ ℝ*
∧ (𝐻‘(𝑥 ∘𝑓
− 𝑑)) ∈
ℝ*)) |
| 84 | 83 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → ((𝐷‘𝐺) ∈ ℝ* ∧ 𝐾 ∈ ℝ*
∧ (𝐻‘(𝑥 ∘𝑓
− 𝑑)) ∈
ℝ*)) |
| 85 | | mdegmulle2.k2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) |
| 86 | 85 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐷‘𝐺) ≤ 𝐾) |
| 87 | 86 | anim1i 592 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))) → ((𝐷‘𝐺) ≤ 𝐾 ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 88 | 87 | anasss 679 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → ((𝐷‘𝐺) ≤ 𝐾 ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 89 | | xrlelttr 11987 |
. . . . . . . . . . . . . 14
⊢ (((𝐷‘𝐺) ∈ ℝ* ∧ 𝐾 ∈ ℝ*
∧ (𝐻‘(𝑥 ∘𝑓
− 𝑑)) ∈
ℝ*) → (((𝐷‘𝐺) ≤ 𝐾 ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))) → (𝐷‘𝐺) < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 90 | 84, 88, 89 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → (𝐷‘𝐺) < (𝐻‘(𝑥 ∘𝑓 − 𝑑))) |
| 91 | 22, 1, 2, 23, 5, 24, 73, 74, 90 | mdeglt 23825 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → (𝐺‘(𝑥 ∘𝑓 − 𝑑)) = (0g‘𝑅)) |
| 92 | 91 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅))) |
| 93 | 1, 56, 2, 5, 6 | mplelf 19433 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝑅)) |
| 94 | 93 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐹:𝐴⟶(Base‘𝑅)) |
| 95 | 94, 27 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐹‘𝑑) ∈ (Base‘𝑅)) |
| 96 | 56, 3, 23 | ringrz 18588 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑑) ∈ (Base‘𝑅)) → ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 97 | 55, 95, 96 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 98 | 97 | adantrr 753 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 99 | 92, 98 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 100 | 99 | anassrs 680 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) ∧ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 101 | | simplrr 801 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐽 + 𝐾) < (𝐻‘𝑥)) |
| 102 | 42 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘𝑑) ∈ ℝ) |
| 103 | 81 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ∈
ℝ) |
| 104 | 35 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐽 ∈
ℕ0) |
| 105 | 104 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐽 ∈ ℝ) |
| 106 | 78 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐾 ∈
ℕ0) |
| 107 | 106 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → 𝐾 ∈ ℝ) |
| 108 | | le2add 10510 |
. . . . . . . . . . . . 13
⊢ ((((𝐻‘𝑑) ∈ ℝ ∧ (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) →
(((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ≤ 𝐾) → ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘𝑓 − 𝑑))) ≤ (𝐽 + 𝐾))) |
| 109 | 102, 103,
105, 107, 108 | syl22anc 1327 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ≤ 𝐾) → ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘𝑓 − 𝑑))) ≤ (𝐽 + 𝐾))) |
| 110 | 5, 24 | tdeglem3 23819 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ (𝑥 ∘𝑓 − 𝑑) ∈ 𝐴) → (𝐻‘(𝑑 ∘𝑓 + (𝑥 ∘𝑓
− 𝑑))) = ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 111 | 60, 27, 66, 110 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘(𝑑 ∘𝑓 + (𝑥 ∘𝑓
− 𝑑))) = ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 112 | 5 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴) → 𝑑:𝐼⟶ℕ0) |
| 113 | 112 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑑:𝐼⟶ℕ0) |
| 114 | 113 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑑‘𝑏) ∈
ℕ0) |
| 115 | 114 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑑‘𝑏) ∈ ℂ) |
| 116 | 5 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥:𝐼⟶ℕ0) |
| 117 | 116 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥:𝐼⟶ℕ0) |
| 118 | 117 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈
ℕ0) |
| 119 | 118 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈ ℂ) |
| 120 | 115, 119 | pncan3d 10395 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → ((𝑑‘𝑏) + ((𝑥‘𝑏) − (𝑑‘𝑏))) = (𝑥‘𝑏)) |
| 121 | 120 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑏 ∈ 𝐼 ↦ ((𝑑‘𝑏) + ((𝑥‘𝑏) − (𝑑‘𝑏)))) = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
| 122 | | simp1 1061 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝐼 ∈ 𝑉) |
| 123 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑑‘𝑏) ∈ V) |
| 124 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → ((𝑥‘𝑏) − (𝑑‘𝑏)) ∈ V) |
| 125 | 113 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑑 = (𝑏 ∈ 𝐼 ↦ (𝑑‘𝑏))) |
| 126 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈ V) |
| 127 | 117 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
| 128 | 122, 126,
123, 127, 125 | offval2 6914 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∘𝑓 − 𝑑) = (𝑏 ∈ 𝐼 ↦ ((𝑥‘𝑏) − (𝑑‘𝑏)))) |
| 129 | 122, 123,
124, 125, 128 | offval2 6914 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑑 ∘𝑓 + (𝑥 ∘𝑓
− 𝑑)) = (𝑏 ∈ 𝐼 ↦ ((𝑑‘𝑏) + ((𝑥‘𝑏) − (𝑑‘𝑏))))) |
| 130 | 121, 129,
127 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑑 ∘𝑓 + (𝑥 ∘𝑓
− 𝑑)) = 𝑥) |
| 131 | 60, 27, 61, 130 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝑑 ∘𝑓 + (𝑥 ∘𝑓
− 𝑑)) = 𝑥) |
| 132 | 131 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘(𝑑 ∘𝑓 + (𝑥 ∘𝑓
− 𝑑))) = (𝐻‘𝑥)) |
| 133 | 111, 132 | eqtr3d 2658 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘𝑓 − 𝑑))) = (𝐻‘𝑥)) |
| 134 | 133 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (((𝐻‘𝑑) + (𝐻‘(𝑥 ∘𝑓 − 𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻‘𝑥) ≤ (𝐽 + 𝐾))) |
| 135 | 109, 134 | sylibd 229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ≤ 𝐾) → (𝐻‘𝑥) ≤ (𝐽 + 𝐾))) |
| 136 | 102, 105 | lenltd 10183 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐻‘𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻‘𝑑))) |
| 137 | 103, 107 | lenltd 10183 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐻‘(𝑥 ∘𝑓 − 𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 138 | 136, 137 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻‘𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))))) |
| 139 | | ioran 511 |
. . . . . . . . . . . 12
⊢ (¬
(𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))) ↔ (¬ 𝐽 < (𝐻‘𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 140 | 138, 139 | syl6bbr 278 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘𝑓 − 𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))))) |
| 141 | 41, 61 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘𝑥) ∈
ℕ0) |
| 142 | 141 | nn0red 11352 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐻‘𝑥) ∈ ℝ) |
| 143 | 35, 78 | nn0addcld 11355 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽 + 𝐾) ∈
ℕ0) |
| 144 | 143 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐽 + 𝐾) ∈
ℕ0) |
| 145 | 144 | nn0red 11352 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐽 + 𝐾) ∈ ℝ) |
| 146 | 142, 145 | lenltd 10183 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐻‘𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻‘𝑥))) |
| 147 | 135, 140,
146 | 3imtr3d 282 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (¬ (𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻‘𝑥))) |
| 148 | 101, 147 | mt4d 152 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → (𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘𝑓 − 𝑑)))) |
| 149 | 72, 100, 148 | mpjaodan 827 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥}) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))) = (0g‘𝑅)) |
| 150 | 149 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑)))) = (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦
(0g‘𝑅))) |
| 151 | 150 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦
(0g‘𝑅)))) |
| 152 | | ringmnd 18556 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 153 | 54, 152 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 154 | 153 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → 𝑅 ∈ Mnd) |
| 155 | | ovex 6678 |
. . . . . . . 8
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 156 | 5, 155 | rab2ex 4816 |
. . . . . . 7
⊢ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∈ V |
| 157 | 23 | gsumz 17374 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ∈ V) → (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
| 158 | 154, 156,
157 | sylancl 694 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
| 159 | 151, 158 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘𝑟 ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘𝑓 − 𝑑))))) =
(0g‘𝑅)) |
| 160 | 10, 21, 159 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅)) |
| 161 | 160 | expr 643 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅))) |
| 162 | 161 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅))) |
| 163 | 1 | mplring 19452 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
| 164 | 38, 54, 163 | syl2anc 693 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 165 | 2, 4 | ringcl 18561 |
. . . 4
⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
| 166 | 164, 6, 7, 165 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
| 167 | 34, 143 | sseldi 3601 |
. . 3
⊢ (𝜑 → (𝐽 + 𝐾) ∈
ℝ*) |
| 168 | 22, 1, 2, 23, 5, 24 | mdegleb 23824 |
. . 3
⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅)))) |
| 169 | 166, 167,
168 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅)))) |
| 170 | 162, 169 | mpbird 247 |
1
⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) |