MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Visualization version   Unicode version

Theorem opnreen 22634
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~~  ~P NN )

Proof of Theorem opnreen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10027 . . . . 5  |-  RR  e.  _V
2 elssuni 4467 . . . . . 6  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( topGen `
 ran  (,) )
)
3 uniretop 22566 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
42, 3syl6sseqr 3652 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
5 ssdomg 8001 . . . . 5  |-  ( RR  e.  _V  ->  ( A  C_  RR  ->  A  ~<_  RR ) )
61, 4, 5mpsyl 68 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  ~<_  RR )
7 rpnnen 14956 . . . 4  |-  RR  ~~  ~P NN
8 domentr 8015 . . . 4  |-  ( ( A  ~<_  RR  /\  RR  ~~  ~P NN )  ->  A  ~<_  ~P NN )
96, 7, 8sylancl 694 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  ~<_  ~P NN )
109adantr 481 . 2  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~<_  ~P NN )
11 n0 3931 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
124sselda 3603 . . . . . . . . . 10  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  x  e.  RR )
13 rpnnen2 14955 . . . . . . . . . . . . 13  |-  ~P NN  ~<_  ( 0 [,] 1
)
14 rphalfcl 11858 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
1514rpred 11872 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR )
16 resubcl 10345 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR )  ->  ( x  -  ( y  /  2
) )  e.  RR )
1715, 16sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  e.  RR )
18 readdcl 10019 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR )  ->  ( x  +  ( y  /  2
) )  e.  RR )
1915, 18sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  e.  RR )
20 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  e.  RR )
21 ltsubrp 11866 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( x  -  (
y  /  2 ) )  <  x )
2214, 21sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  <  x )
23 ltaddrp 11867 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  x  <  ( x  +  ( y  / 
2 ) ) )
2414, 23sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  <  ( x  +  ( y  /  2
) ) )
2517, 20, 19, 22, 24lttrd 10198 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  <  ( x  +  ( y  / 
2 ) ) )
26 iccen 12317 . . . . . . . . . . . . . 14  |-  ( ( ( x  -  (
y  /  2 ) )  e.  RR  /\  ( x  +  (
y  /  2 ) )  e.  RR  /\  ( x  -  (
y  /  2 ) )  <  ( x  +  ( y  / 
2 ) ) )  ->  ( 0 [,] 1 )  ~~  (
( x  -  (
y  /  2 ) ) [,] ( x  +  ( y  / 
2 ) ) ) )
2717, 19, 25, 26syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( 0 [,] 1
)  ~~  ( (
x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )
28 domentr 8015 . . . . . . . . . . . . 13  |-  ( ( ~P NN  ~<_  ( 0 [,] 1 )  /\  ( 0 [,] 1
)  ~~  ( (
x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )  ->  ~P NN  ~<_  ( ( x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )
2913, 27, 28sylancr 695 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( ( x  -  ( y  / 
2 ) ) [,] ( x  +  ( y  /  2 ) ) ) )
30 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( x  -  y ) (,) ( x  +  y ) )  e. 
_V
31 rpre 11839 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR+  ->  y  e.  RR )
32 resubcl 10345 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
3331, 32sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  e.  RR )
3433rexrd 10089 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  e.  RR* )
35 readdcl 10019 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
3631, 35sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  y )  e.  RR )
3736rexrd 10089 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  y )  e.  RR* )
3820recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  e.  CC )
3915adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  RR )
4039recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  CC )
4138, 40, 40subsub4d 10423 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  =  ( x  -  ( ( y  /  2 )  +  ( y  /  2
) ) ) )
4231adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
y  e.  RR )
4342recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
y  e.  CC )
44432halvesd 11278 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( y  / 
2 )  +  ( y  /  2 ) )  =  y )
4544oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
( y  /  2
)  +  ( y  /  2 ) ) )  =  ( x  -  y ) )
4641, 45eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  =  ( x  -  y ) )
4714adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  RR+ )
4817, 47ltsubrpd 11904 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  <  ( x  -  ( y  / 
2 ) ) )
4946, 48eqbrtrrd 4677 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  <  ( x  -  ( y  / 
2 ) ) )
50 ltaddrp 11867 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  +  ( y  /  2 ) )  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( x  +  ( y  /  2 ) )  <  ( ( x  +  ( y  /  2 ) )  +  ( y  / 
2 ) ) )
5119, 47, 50syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  <  ( ( x  +  ( y  /  2 ) )  +  ( y  / 
2 ) ) )
5238, 40, 40addassd 10062 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  +  ( y  /  2
) )  +  ( y  /  2 ) )  =  ( x  +  ( ( y  /  2 )  +  ( y  /  2
) ) ) )
5344oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( ( y  /  2
)  +  ( y  /  2 ) ) )  =  ( x  +  y ) )
5452, 53eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  +  ( y  /  2
) )  +  ( y  /  2 ) )  =  ( x  +  y ) )
5551, 54breqtrd 4679 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  <  ( x  +  y ) )
56 iccssioo 12242 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  -  y )  e.  RR*  /\  ( x  +  y )  e.  RR* )  /\  ( ( x  -  y )  <  (
x  -  ( y  /  2 ) )  /\  ( x  +  ( y  /  2
) )  <  (
x  +  y ) ) )  ->  (
( x  -  (
y  /  2 ) ) [,] ( x  +  ( y  / 
2 ) ) ) 
C_  ( ( x  -  y ) (,) ( x  +  y ) ) )
5734, 37, 49, 55, 56syl22anc 1327 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  C_  ( (
x  -  y ) (,) ( x  +  y ) ) )
58 ssdomg 8001 . . . . . . . . . . . . 13  |-  ( ( ( x  -  y
) (,) ( x  +  y ) )  e.  _V  ->  (
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  C_  ( (
x  -  y ) (,) ( x  +  y ) )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) ) )
5930, 57, 58mpsyl 68 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
60 domtr 8009 . . . . . . . . . . . 12  |-  ( ( ~P NN  ~<_  ( ( x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) )  /\  ( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )  ->  ~P NN  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
6129, 59, 60syl2anc 693 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
62 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
6362bl2ioo 22595 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  =  ( ( x  -  y ) (,) (
x  +  y ) ) )
6431, 63sylan2 491 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  =  ( ( x  -  y ) (,) (
x  +  y ) ) )
6561, 64breqtrrd 4681 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y ) )
6612, 65sylan 488 . . . . . . . . 9  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y ) )
6766adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ~P NN  ~<_  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y ) )
68 simplll 798 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  A  e.  ( topGen ` 
ran  (,) ) )
69 simpr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  C_  A )
70 ssdomg 8001 . . . . . . . . 9  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  ~<_  A ) )
7168, 69, 70sylc 65 . . . . . . . 8  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  ~<_  A )
72 domtr 8009 . . . . . . . 8  |-  ( ( ~P NN  ~<_  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  ~<_  A )  ->  ~P NN  ~<_  A )
7367, 71, 72syl2anc 693 . . . . . . 7  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ~P NN  ~<_  A )
74 eqid 2622 . . . . . . . . . 10  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
7562, 74tgioo 22599 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
7675eleq2i 2693 . . . . . . . 8  |-  ( A  e.  ( topGen `  ran  (,) )  <->  A  e.  ( MetOpen
`  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ) )
7762rexmet 22594 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
7874mopni2 22298 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  C_  A )
7977, 78mp3an1 1411 . . . . . . . 8  |-  ( ( A  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )
8076, 79sylanb 489 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )
8173, 80r19.29a 3078 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  ~P NN 
~<_  A )
8281ex 450 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( x  e.  A  ->  ~P NN  ~<_  A ) )
8382exlimdv 1861 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( E. x  x  e.  A  ->  ~P NN  ~<_  A ) )
8411, 83syl5bi 232 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( A  =/=  (/)  ->  ~P NN  ~<_  A ) )
8584imp 445 . 2  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  ~P NN 
~<_  A )
86 sbth 8080 . 2  |-  ( ( A  ~<_  ~P NN  /\  ~P NN 
~<_  A )  ->  A  ~~  ~P NN )
8710, 85, 86syl2anc 693 1  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~~  ~P NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   abscabs 13974   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  rectbntr0  22635
  Copyright terms: Public domain W3C validator