Proof of Theorem ovncvr2
Step | Hyp | Ref
| Expression |
1 | | ovncvr2.c |
. . . . . . . . . . . . . . . . 17
⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
2 | 1 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 = (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)})) |
3 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘))) |
4 | 3 | rabbidv 3189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝐴 → {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
5 | 4 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 = 𝐴) → {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
6 | | ovncvr2.a |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚
𝑋)) |
7 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ
↑𝑚 𝑋) ∈ V) |
8 | 7, 6 | ssexd 4805 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ V) |
9 | | elpwg 4166 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↔ 𝐴 ⊆ (ℝ ↑𝑚
𝑋))) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↔ 𝐴 ⊆ (ℝ ↑𝑚
𝑋))) |
11 | 6, 10 | mpbird 247 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ 𝒫 (ℝ
↑𝑚 𝑋)) |
12 | | ovex 6678 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∈
V |
13 | 12 | rabex 4813 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑙 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ∈ V |
14 | 13 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ∈ V) |
15 | 2, 5, 11, 14 | fvmptd 6288 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘𝐴) = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
16 | | ssrab2 3687 |
. . . . . . . . . . . . . . . 16
⊢ {𝑙 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ) |
17 | 16 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
18 | 15, 17 | eqsstrd 3639 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶‘𝐴) ⊆ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
19 | | ovncvr2.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ ((𝐷‘𝐴)‘𝐸)) |
20 | | ovncvr2.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) |
21 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝒫 (ℝ
↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))) |
22 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝐴 → (𝐶‘𝑎) = (𝐶‘𝐴)) |
23 | 22 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝐴 → (𝑖 ∈ (𝐶‘𝑎) ↔ 𝑖 ∈ (𝐶‘𝐴))) |
24 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝐴 → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘𝐴)) |
25 | 24 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝐴 → (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)) |
26 | 25 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝐴 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟))) |
27 | 23, 26 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝐴 → ((𝑖 ∈ (𝐶‘𝑎) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)) ↔ (𝑖 ∈ (𝐶‘𝐴) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)))) |
28 | 27 | rabbidva2 3186 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝐴 → {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) |
29 | 28 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝐴 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})) |
30 | 29 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})) |
31 | | rpex 39562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
ℝ+ ∈ V |
32 | 31 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)}) ∈ V) |
34 | 21, 30, 11, 33 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐷‘𝐴) = (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)})) |
35 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 𝐸 → (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
36 | 35 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝐸 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
37 | 36 | rabbidv 3189 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝐸 → {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
38 | 37 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 = 𝐸) → {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑟)} = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
39 | | ovncvr2.e |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
40 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶‘𝐴) ∈ V |
41 | 40 | rabex 4813 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ∈ V) |
43 | 34, 38, 39, 42 | fvmptd 6288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐷‘𝐴)‘𝐸) = {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
44 | 19, 43 | eleqtrd 2703 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)}) |
45 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝐼 → (𝑖‘𝑗) = (𝐼‘𝑗)) |
46 | 45 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝐼 → (𝐿‘(𝑖‘𝑗)) = (𝐿‘(𝐼‘𝑗))) |
47 | 46 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) |
48 | 47 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |
49 | 48 | breq1d 4663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝐼 →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
50 | 49 | elrab 3363 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ {𝑖 ∈ (𝐶‘𝐴) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)} ↔ (𝐼 ∈ (𝐶‘𝐴) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
51 | 44, 50 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼 ∈ (𝐶‘𝐴) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
52 | 51 | simpld 475 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 ∈ (𝐶‘𝐴)) |
53 | 18, 52 | sseldd 3604 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
54 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) →
𝐼:ℕ⟶((ℝ
× ℝ) ↑𝑚 𝑋)) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ)
↑𝑚 𝑋)) |
56 | 55 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ)
↑𝑚 𝑋)) |
57 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
58 | 56, 57 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑𝑚 𝑋)) |
59 | | elmapi 7879 |
. . . . . . . . . 10
⊢ ((𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
61 | 60 | ffvelrnda 6359 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐼‘𝑗)‘𝑘) ∈ (ℝ ×
ℝ)) |
62 | | xp1st 7198 |
. . . . . . . 8
⊢ (((𝐼‘𝑗)‘𝑘) ∈ (ℝ × ℝ) →
(1st ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
63 | 61, 62 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
64 | | eqid 2622 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) |
65 | 63, 64 | fmptd 6385 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ) |
66 | | reex 10027 |
. . . . . . . . 9
⊢ ℝ
∈ V |
67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
68 | | ovncvr2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
69 | | elmapg 7870 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → ((𝑘 ∈
𝑋 ↦ (1st
‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
70 | 67, 68, 69 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
71 | 70 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
72 | 65, 71 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋)) |
73 | | eqid 2622 |
. . . . 5
⊢ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
74 | 72, 73 | fmptd 6385 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑𝑚 𝑋)) |
75 | | ovncvr2.b |
. . . . . 6
⊢ 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
76 | 75 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))))) |
77 | 76 | feq1d 6030 |
. . . 4
⊢ (𝜑 → (𝐵:ℕ⟶(ℝ
↑𝑚 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑𝑚 𝑋))) |
78 | 74, 77 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐵:ℕ⟶(ℝ
↑𝑚 𝑋)) |
79 | | xp2nd 7199 |
. . . . . . . 8
⊢ (((𝐼‘𝑗)‘𝑘) ∈ (ℝ × ℝ) →
(2nd ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
80 | 61, 79 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑘)) ∈ ℝ) |
81 | | eqid 2622 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) |
82 | 80, 81 | fmptd 6385 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ) |
83 | | elmapg 7870 |
. . . . . . . 8
⊢ ((ℝ
∈ V ∧ 𝑋 ∈
Fin) → ((𝑘 ∈
𝑋 ↦ (2nd
‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
84 | 67, 68, 83 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
85 | 84 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
86 | 82, 85 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ (ℝ
↑𝑚 𝑋)) |
87 | | eqid 2622 |
. . . . 5
⊢ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
88 | 86, 87 | fmptd 6385 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑𝑚 𝑋)) |
89 | | ovncvr2.t |
. . . . . 6
⊢ 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
90 | 89 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))))) |
91 | 90 | feq1d 6030 |
. . . 4
⊢ (𝜑 → (𝑇:ℕ⟶(ℝ
↑𝑚 𝑋) ↔ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))):ℕ⟶(ℝ
↑𝑚 𝑋))) |
92 | 88, 91 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝑇:ℕ⟶(ℝ
↑𝑚 𝑋)) |
93 | 78, 92 | jca 554 |
. 2
⊢ (𝜑 → (𝐵:ℕ⟶(ℝ
↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ
↑𝑚 𝑋))) |
94 | 15 | idi 2 |
. . . . . 6
⊢ (𝜑 → (𝐶‘𝐴) = {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
95 | 52, 94 | eleqtrd 2703 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)}) |
96 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝐼 → (𝑙‘𝑗) = (𝐼‘𝑗)) |
97 | 96 | coeq2d 5284 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐼 → ([,) ∘ (𝑙‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
98 | 97 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐼 → (([,) ∘ (𝑙‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
99 | 98 | ixpeq2dv 7924 |
. . . . . . . . 9
⊢ (𝑙 = 𝐼 → X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
100 | 99 | adantr 481 |
. . . . . . . 8
⊢ ((𝑙 = 𝐼 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
101 | 100 | iuneq2dv 4542 |
. . . . . . 7
⊢ (𝑙 = 𝐼 → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
102 | 101 | sseq2d 3633 |
. . . . . 6
⊢ (𝑙 = 𝐼 → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
103 | 102 | elrab 3363 |
. . . . 5
⊢ (𝐼 ∈ {𝑙 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)
∣ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑙‘𝑗))‘𝑘)} ↔ (𝐼 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
104 | 95, 103 | sylib 208 |
. . . 4
⊢ (𝜑 → (𝐼 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
105 | 104 | simprd 479 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
106 | 60 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
107 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
108 | 106, 107 | fvovco 39381 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘)))) |
109 | | mptexg 6484 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
110 | 68, 109 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
111 | 110 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
112 | 76, 111 | fvmpt2d 6293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑗) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
113 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑘)) ∈ V) |
114 | 112, 113 | fvmpt2d 6293 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑗)‘𝑘) = (1st ‘((𝐼‘𝑗)‘𝑘))) |
115 | 114 | eqcomd 2628 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝐼‘𝑗)‘𝑘)) = ((𝐵‘𝑗)‘𝑘)) |
116 | | mptexg 6484 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
117 | 68, 116 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
118 | 117 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) |
119 | 90, 118 | fvmpt2d 6293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
120 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑘)) ∈ V) |
121 | 119, 120 | fvmpt2d 6293 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑗)‘𝑘) = (2nd ‘((𝐼‘𝑗)‘𝑘))) |
122 | 121 | eqcomd 2628 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝐼‘𝑗)‘𝑘)) = ((𝑇‘𝑗)‘𝑘)) |
123 | 115, 122 | oveq12d 6668 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘))) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
124 | 108, 123 | eqtrd 2656 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
125 | 124 | ixpeq2dva 7923 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
126 | 125 | iuneq2dv 4542 |
. . 3
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝐼‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
127 | 105, 126 | sseqtrd 3641 |
. 2
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
128 | | ovncvr2.l |
. . . . . . . 8
⊢ 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘))) |
129 | 128 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐿 = (ℎ ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘)))) |
130 | | coeq2 5280 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝐼‘𝑗) → ([,) ∘ ℎ) = ([,) ∘ (𝐼‘𝑗))) |
131 | 130 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝐼‘𝑗) → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
132 | 131 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
133 | 132 | adantllr 755 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
134 | 108 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘)))) |
135 | 123 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝐼‘𝑗)‘𝑘))[,)(2nd ‘((𝐼‘𝑗)‘𝑘))) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
136 | 133, 134,
135 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ℎ)‘𝑘) = (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) |
137 | 136 | fveq2d 6195 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ ℎ)‘𝑘)) = (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) |
138 | 137 | prodeq2dv 14653 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ℎ = (𝐼‘𝑗)) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ℎ)‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) |
139 | 68 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
140 | 75 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))) ∈ V) → (𝐵‘𝑗) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
141 | 57, 111, 140 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑗) = (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘)))) |
142 | 141 | feq1d 6030 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐵‘𝑗):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ (1st ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
143 | 65, 142 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐵‘𝑗):𝑋⟶ℝ) |
144 | 143 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑗):𝑋⟶ℝ) |
145 | 144, 107 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐵‘𝑗)‘𝑘) ∈ ℝ) |
146 | 89 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))) ∈ V) → (𝑇‘𝑗) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
147 | 57, 118, 146 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗) = (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘)))) |
148 | 147 | feq1d 6030 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑇‘𝑗):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ (2nd ‘((𝐼‘𝑗)‘𝑘))):𝑋⟶ℝ)) |
149 | 82, 148 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇‘𝑗):𝑋⟶ℝ) |
150 | 149 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝑇‘𝑗):𝑋⟶ℝ) |
151 | 150, 107 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝑇‘𝑗)‘𝑘) ∈ ℝ) |
152 | | volicore 40795 |
. . . . . . . . 9
⊢ ((((𝐵‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝑇‘𝑗)‘𝑘) ∈ ℝ) → (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∈ ℝ) |
153 | 145, 151,
152 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∈ ℝ) |
154 | 139, 153 | fprodrecl 14683 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∈ ℝ) |
155 | 129, 138,
58, 154 | fvmptd 6288 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐿‘(𝐼‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) |
156 | 155 | eqcomd 2628 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) = (𝐿‘(𝐼‘𝑗))) |
157 | 156 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘)))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) |
158 | 157 | fveq2d 6195 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗))))) |
159 | 51 | simprd 479 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝐼‘𝑗)))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
160 | 158, 159 | eqbrtrd 4675 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
161 | 93, 127, 160 | jca31 557 |
1
⊢ (𝜑 → (((𝐵:ℕ⟶(ℝ
↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ
↑𝑚 𝑋)) ∧ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐵‘𝑗)‘𝑘)[,)((𝑇‘𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |