MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval Structured version   Visualization version   GIF version

Theorem tmsxpsval 22343
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
tmsxpsval.a (𝜑𝐴𝑋)
tmsxpsval.b (𝜑𝐵𝑌)
tmsxpsval.c (𝜑𝐶𝑋)
tmsxpsval.d (𝜑𝐷𝑌)
Assertion
Ref Expression
tmsxpsval (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))

Proof of Theorem tmsxpsval
StepHypRef Expression
1 eqid 2622 . . 3 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
2 eqid 2622 . . 3 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
3 eqid 2622 . . 3 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
4 tmsxps.1 . . . 4 (𝜑𝑀 ∈ (∞Met‘𝑋))
5 eqid 2622 . . . . 5 (toMetSp‘𝑀) = (toMetSp‘𝑀)
65tmsxms 22291 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
74, 6syl 17 . . 3 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
8 tmsxps.2 . . . 4 (𝜑𝑁 ∈ (∞Met‘𝑌))
9 eqid 2622 . . . . 5 (toMetSp‘𝑁) = (toMetSp‘𝑁)
109tmsxms 22291 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
118, 10syl 17 . . 3 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
12 tmsxps.p . . 3 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
13 eqid 2622 . . 3 ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) = ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))
14 eqid 2622 . . 3 ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) = ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))
155tmsds 22289 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑀 = (dist‘(toMetSp‘𝑀)))
164, 15syl 17 . . . . 5 (𝜑𝑀 = (dist‘(toMetSp‘𝑀)))
175tmsbas 22288 . . . . . . 7 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀)))
184, 17syl 17 . . . . . 6 (𝜑𝑋 = (Base‘(toMetSp‘𝑀)))
1918fveq2d 6195 . . . . 5 (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘(toMetSp‘𝑀))))
204, 16, 193eltr3d 2715 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
21 ssid 3624 . . . 4 (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))
22 xmetres2 22166 . . . 4 (((dist‘(toMetSp‘𝑀)) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))) ∧ (Base‘(toMetSp‘𝑀)) ⊆ (Base‘(toMetSp‘𝑀))) → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
2320, 21, 22sylancl 694 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑀))))
249tmsds 22289 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑁 = (dist‘(toMetSp‘𝑁)))
258, 24syl 17 . . . . 5 (𝜑𝑁 = (dist‘(toMetSp‘𝑁)))
269tmsbas 22288 . . . . . . 7 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁)))
278, 26syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(toMetSp‘𝑁)))
2827fveq2d 6195 . . . . 5 (𝜑 → (∞Met‘𝑌) = (∞Met‘(Base‘(toMetSp‘𝑁))))
298, 25, 283eltr3d 2715 . . . 4 (𝜑 → (dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
30 ssid 3624 . . . 4 (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))
31 xmetres2 22166 . . . 4 (((dist‘(toMetSp‘𝑁)) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))) ∧ (Base‘(toMetSp‘𝑁)) ⊆ (Base‘(toMetSp‘𝑁))) → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
3229, 30, 31sylancl 694 . . 3 (𝜑 → ((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁)))) ∈ (∞Met‘(Base‘(toMetSp‘𝑁))))
33 tmsxpsval.a . . . 4 (𝜑𝐴𝑋)
3433, 18eleqtrd 2703 . . 3 (𝜑𝐴 ∈ (Base‘(toMetSp‘𝑀)))
35 tmsxpsval.b . . . 4 (𝜑𝐵𝑌)
3635, 27eleqtrd 2703 . . 3 (𝜑𝐵 ∈ (Base‘(toMetSp‘𝑁)))
37 tmsxpsval.c . . . 4 (𝜑𝐶𝑋)
3837, 18eleqtrd 2703 . . 3 (𝜑𝐶 ∈ (Base‘(toMetSp‘𝑀)))
39 tmsxpsval.d . . . 4 (𝜑𝐷𝑌)
4039, 27eleqtrd 2703 . . 3 (𝜑𝐷 ∈ (Base‘(toMetSp‘𝑁)))
411, 2, 3, 7, 11, 12, 13, 14, 23, 32, 34, 36, 38, 40xpsdsval 22186 . 2 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ))
4234, 38ovresd 6801 . . . . 5 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4316oveqd 6667 . . . . 5 (𝜑 → (𝐴𝑀𝐶) = (𝐴(dist‘(toMetSp‘𝑀))𝐶))
4442, 43eqtr4d 2659 . . . 4 (𝜑 → (𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶) = (𝐴𝑀𝐶))
4536, 40ovresd 6801 . . . . 5 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4625oveqd 6667 . . . . 5 (𝜑 → (𝐵𝑁𝐷) = (𝐵(dist‘(toMetSp‘𝑁))𝐷))
4745, 46eqtr4d 2659 . . . 4 (𝜑 → (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷) = (𝐵𝑁𝐷))
4844, 47preq12d 4276 . . 3 (𝜑 → {(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)} = {(𝐴𝑀𝐶), (𝐵𝑁𝐷)})
4948supeq1d 8352 . 2 (𝜑 → sup({(𝐴((dist‘(toMetSp‘𝑀)) ↾ ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑀))))𝐶), (𝐵((dist‘(toMetSp‘𝑁)) ↾ ((Base‘(toMetSp‘𝑁)) × (Base‘(toMetSp‘𝑁))))𝐷)}, ℝ*, < ) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
5041, 49eqtrd 2656 1 (𝜑 → (⟨𝐴, 𝐵𝑃𝐶, 𝐷⟩) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  {cpr 4179  cop 4183   × cxp 5112  cres 5116  cfv 5888  (class class class)co 6650  supcsup 8346  *cxr 10073   < clt 10074  Basecbs 15857  distcds 15950   ×s cxps 16166  ∞Metcxmt 19731  ∞MetSpcxme 22122  toMetSpctmt 22124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-xrs 16162  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-tms 22127
This theorem is referenced by:  tmsxpsval2  22344
  Copyright terms: Public domain W3C validator