MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval Structured version   Visualization version   Unicode version

Theorem tmsxpsval 22343
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p  |-  P  =  ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )
tmsxps.1  |-  ( ph  ->  M  e.  ( *Met `  X ) )
tmsxps.2  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
tmsxpsval.a  |-  ( ph  ->  A  e.  X )
tmsxpsval.b  |-  ( ph  ->  B  e.  Y )
tmsxpsval.c  |-  ( ph  ->  C  e.  X )
tmsxpsval.d  |-  ( ph  ->  D  e.  Y )
Assertion
Ref Expression
tmsxpsval  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )

Proof of Theorem tmsxpsval
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( (toMetSp `  M )  X.s  (toMetSp `  N
) )  =  ( (toMetSp `  M )  X.s  (toMetSp `  N ) )
2 eqid 2622 . . 3  |-  ( Base `  (toMetSp `  M )
)  =  ( Base `  (toMetSp `  M )
)
3 eqid 2622 . . 3  |-  ( Base `  (toMetSp `  N )
)  =  ( Base `  (toMetSp `  N )
)
4 tmsxps.1 . . . 4  |-  ( ph  ->  M  e.  ( *Met `  X ) )
5 eqid 2622 . . . . 5  |-  (toMetSp `  M
)  =  (toMetSp `  M
)
65tmsxms 22291 . . . 4  |-  ( M  e.  ( *Met `  X )  ->  (toMetSp `  M )  e.  *MetSp )
74, 6syl 17 . . 3  |-  ( ph  ->  (toMetSp `  M )  e.  *MetSp )
8 tmsxps.2 . . . 4  |-  ( ph  ->  N  e.  ( *Met `  Y ) )
9 eqid 2622 . . . . 5  |-  (toMetSp `  N
)  =  (toMetSp `  N
)
109tmsxms 22291 . . . 4  |-  ( N  e.  ( *Met `  Y )  ->  (toMetSp `  N )  e.  *MetSp )
118, 10syl 17 . . 3  |-  ( ph  ->  (toMetSp `  N )  e.  *MetSp )
12 tmsxps.p . . 3  |-  P  =  ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )
13 eqid 2622 . . 3  |-  ( (
dist `  (toMetSp `  M
) )  |`  (
( Base `  (toMetSp `  M
) )  X.  ( Base `  (toMetSp `  M
) ) ) )  =  ( ( dist `  (toMetSp `  M )
)  |`  ( ( Base `  (toMetSp `  M )
)  X.  ( Base `  (toMetSp `  M )
) ) )
14 eqid 2622 . . 3  |-  ( (
dist `  (toMetSp `  N
) )  |`  (
( Base `  (toMetSp `  N
) )  X.  ( Base `  (toMetSp `  N
) ) ) )  =  ( ( dist `  (toMetSp `  N )
)  |`  ( ( Base `  (toMetSp `  N )
)  X.  ( Base `  (toMetSp `  N )
) ) )
155tmsds 22289 . . . . . 6  |-  ( M  e.  ( *Met `  X )  ->  M  =  ( dist `  (toMetSp `  M ) ) )
164, 15syl 17 . . . . 5  |-  ( ph  ->  M  =  ( dist `  (toMetSp `  M )
) )
175tmsbas 22288 . . . . . . 7  |-  ( M  e.  ( *Met `  X )  ->  X  =  ( Base `  (toMetSp `  M ) ) )
184, 17syl 17 . . . . . 6  |-  ( ph  ->  X  =  ( Base `  (toMetSp `  M )
) )
1918fveq2d 6195 . . . . 5  |-  ( ph  ->  ( *Met `  X )  =  ( *Met `  ( Base `  (toMetSp `  M
) ) ) )
204, 16, 193eltr3d 2715 . . . 4  |-  ( ph  ->  ( dist `  (toMetSp `  M ) )  e.  ( *Met `  ( Base `  (toMetSp `  M
) ) ) )
21 ssid 3624 . . . 4  |-  ( Base `  (toMetSp `  M )
)  C_  ( Base `  (toMetSp `  M )
)
22 xmetres2 22166 . . . 4  |-  ( ( ( dist `  (toMetSp `  M ) )  e.  ( *Met `  ( Base `  (toMetSp `  M
) ) )  /\  ( Base `  (toMetSp `  M
) )  C_  ( Base `  (toMetSp `  M
) ) )  -> 
( ( dist `  (toMetSp `  M ) )  |`  ( ( Base `  (toMetSp `  M ) )  X.  ( Base `  (toMetSp `  M ) ) ) )  e.  ( *Met `  ( Base `  (toMetSp `  M )
) ) )
2320, 21, 22sylancl 694 . . 3  |-  ( ph  ->  ( ( dist `  (toMetSp `  M ) )  |`  ( ( Base `  (toMetSp `  M ) )  X.  ( Base `  (toMetSp `  M ) ) ) )  e.  ( *Met `  ( Base `  (toMetSp `  M )
) ) )
249tmsds 22289 . . . . . 6  |-  ( N  e.  ( *Met `  Y )  ->  N  =  ( dist `  (toMetSp `  N ) ) )
258, 24syl 17 . . . . 5  |-  ( ph  ->  N  =  ( dist `  (toMetSp `  N )
) )
269tmsbas 22288 . . . . . . 7  |-  ( N  e.  ( *Met `  Y )  ->  Y  =  ( Base `  (toMetSp `  N ) ) )
278, 26syl 17 . . . . . 6  |-  ( ph  ->  Y  =  ( Base `  (toMetSp `  N )
) )
2827fveq2d 6195 . . . . 5  |-  ( ph  ->  ( *Met `  Y )  =  ( *Met `  ( Base `  (toMetSp `  N
) ) ) )
298, 25, 283eltr3d 2715 . . . 4  |-  ( ph  ->  ( dist `  (toMetSp `  N ) )  e.  ( *Met `  ( Base `  (toMetSp `  N
) ) ) )
30 ssid 3624 . . . 4  |-  ( Base `  (toMetSp `  N )
)  C_  ( Base `  (toMetSp `  N )
)
31 xmetres2 22166 . . . 4  |-  ( ( ( dist `  (toMetSp `  N ) )  e.  ( *Met `  ( Base `  (toMetSp `  N
) ) )  /\  ( Base `  (toMetSp `  N
) )  C_  ( Base `  (toMetSp `  N
) ) )  -> 
( ( dist `  (toMetSp `  N ) )  |`  ( ( Base `  (toMetSp `  N ) )  X.  ( Base `  (toMetSp `  N ) ) ) )  e.  ( *Met `  ( Base `  (toMetSp `  N )
) ) )
3229, 30, 31sylancl 694 . . 3  |-  ( ph  ->  ( ( dist `  (toMetSp `  N ) )  |`  ( ( Base `  (toMetSp `  N ) )  X.  ( Base `  (toMetSp `  N ) ) ) )  e.  ( *Met `  ( Base `  (toMetSp `  N )
) ) )
33 tmsxpsval.a . . . 4  |-  ( ph  ->  A  e.  X )
3433, 18eleqtrd 2703 . . 3  |-  ( ph  ->  A  e.  ( Base `  (toMetSp `  M )
) )
35 tmsxpsval.b . . . 4  |-  ( ph  ->  B  e.  Y )
3635, 27eleqtrd 2703 . . 3  |-  ( ph  ->  B  e.  ( Base `  (toMetSp `  N )
) )
37 tmsxpsval.c . . . 4  |-  ( ph  ->  C  e.  X )
3837, 18eleqtrd 2703 . . 3  |-  ( ph  ->  C  e.  ( Base `  (toMetSp `  M )
) )
39 tmsxpsval.d . . . 4  |-  ( ph  ->  D  e.  Y )
4039, 27eleqtrd 2703 . . 3  |-  ( ph  ->  D  e.  ( Base `  (toMetSp `  N )
) )
411, 2, 3, 7, 11, 12, 13, 14, 23, 32, 34, 36, 38, 40xpsdsval 22186 . 2  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  sup ( { ( A ( ( dist `  (toMetSp `  M ) )  |`  ( ( Base `  (toMetSp `  M ) )  X.  ( Base `  (toMetSp `  M ) ) ) ) C ) ,  ( B ( (
dist `  (toMetSp `  N
) )  |`  (
( Base `  (toMetSp `  N
) )  X.  ( Base `  (toMetSp `  N
) ) ) ) D ) } ,  RR* ,  <  ) )
4234, 38ovresd 6801 . . . . 5  |-  ( ph  ->  ( A ( (
dist `  (toMetSp `  M
) )  |`  (
( Base `  (toMetSp `  M
) )  X.  ( Base `  (toMetSp `  M
) ) ) ) C )  =  ( A ( dist `  (toMetSp `  M ) ) C ) )
4316oveqd 6667 . . . . 5  |-  ( ph  ->  ( A M C )  =  ( A ( dist `  (toMetSp `  M ) ) C ) )
4442, 43eqtr4d 2659 . . . 4  |-  ( ph  ->  ( A ( (
dist `  (toMetSp `  M
) )  |`  (
( Base `  (toMetSp `  M
) )  X.  ( Base `  (toMetSp `  M
) ) ) ) C )  =  ( A M C ) )
4536, 40ovresd 6801 . . . . 5  |-  ( ph  ->  ( B ( (
dist `  (toMetSp `  N
) )  |`  (
( Base `  (toMetSp `  N
) )  X.  ( Base `  (toMetSp `  N
) ) ) ) D )  =  ( B ( dist `  (toMetSp `  N ) ) D ) )
4625oveqd 6667 . . . . 5  |-  ( ph  ->  ( B N D )  =  ( B ( dist `  (toMetSp `  N ) ) D ) )
4745, 46eqtr4d 2659 . . . 4  |-  ( ph  ->  ( B ( (
dist `  (toMetSp `  N
) )  |`  (
( Base `  (toMetSp `  N
) )  X.  ( Base `  (toMetSp `  N
) ) ) ) D )  =  ( B N D ) )
4844, 47preq12d 4276 . . 3  |-  ( ph  ->  { ( A ( ( dist `  (toMetSp `  M ) )  |`  ( ( Base `  (toMetSp `  M ) )  X.  ( Base `  (toMetSp `  M ) ) ) ) C ) ,  ( B ( (
dist `  (toMetSp `  N
) )  |`  (
( Base `  (toMetSp `  N
) )  X.  ( Base `  (toMetSp `  N
) ) ) ) D ) }  =  { ( A M C ) ,  ( B N D ) } )
4948supeq1d 8352 . 2  |-  ( ph  ->  sup ( { ( A ( ( dist `  (toMetSp `  M )
)  |`  ( ( Base `  (toMetSp `  M )
)  X.  ( Base `  (toMetSp `  M )
) ) ) C ) ,  ( B ( ( dist `  (toMetSp `  N ) )  |`  ( ( Base `  (toMetSp `  N ) )  X.  ( Base `  (toMetSp `  N ) ) ) ) D ) } ,  RR* ,  <  )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
5041, 49eqtrd 2656 1  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574   {cpr 4179   <.cop 4183    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650   supcsup 8346   RR*cxr 10073    < clt 10074   Basecbs 15857   distcds 15950    X.s cxps 16166   *Metcxmt 19731   *MetSpcxme 22122  toMetSpctmt 22124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-xrs 16162  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-tms 22127
This theorem is referenced by:  tmsxpsval2  22344
  Copyright terms: Public domain W3C validator