MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Structured version   Visualization version   GIF version

Theorem volivth 23375
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem volivth
Dummy variables 𝑢 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ∈ dom vol)
2 mnfxr 10096 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ ∈ ℝ*)
4 iccssxr 12256 . . . . . . 7 (0[,](vol‘𝐴)) ⊆ ℝ*
5 simpr 477 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ (0[,](vol‘𝐴)))
64, 5sseldi 3601 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ ℝ*)
76adantr 481 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
8 iccssxr 12256 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
9 volf 23297 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
109ffvelrni 6358 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
118, 10sseldi 3601 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
1211adantr 481 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (vol‘𝐴) ∈ ℝ*)
1312adantr 481 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
14 0xr 10086 . . . . . . . . . 10 0 ∈ ℝ*
15 elicc1 12219 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
1614, 12, 15sylancr 695 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
175, 16mpbid 222 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴)))
1817simp2d 1074 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 0 ≤ 𝐵)
1918adantr 481 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 0 ≤ 𝐵)
20 mnflt0 11959 . . . . . . . 8 -∞ < 0
21 xrltletr 11988 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐵) → -∞ < 𝐵))
2220, 21mpani 712 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → -∞ < 𝐵))
232, 14, 22mp3an12 1414 . . . . . 6 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 → -∞ < 𝐵))
247, 19, 23sylc 65 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ < 𝐵)
25 simpr 477 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
26 xrre2 12001 . . . . 5 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 < (vol‘𝐴))) → 𝐵 ∈ ℝ)
273, 7, 13, 24, 25, 26syl32anc 1334 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ)
28 volsup2 23373 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
291, 27, 25, 28syl3anc 1326 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
30 nnre 11027 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
3130ad2antrl 764 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝑛 ∈ ℝ)
3231renegcld 10457 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ)
3327adantr 481 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ)
34 0red 10041 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ∈ ℝ)
35 nngt0 11049 . . . . . . . 8 (𝑛 ∈ ℕ → 0 < 𝑛)
3635ad2antrl 764 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 < 𝑛)
3731lt0neg2d 10598 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (0 < 𝑛 ↔ -𝑛 < 0))
3836, 37mpbid 222 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 0)
3932, 34, 31, 38, 36lttrd 10198 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 𝑛)
40 iccssre 12255 . . . . . 6 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
4132, 31, 40syl2anc 693 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ⊆ ℝ)
42 ax-resscn 9993 . . . . . . 7 ℝ ⊆ ℂ
43 ssid 3624 . . . . . . 7 ℂ ⊆ ℂ
44 cncfss 22702 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
4542, 43, 44mp2an 708 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
461adantr 481 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐴 ∈ dom vol)
47 eqid 2622 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) = (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))
4847volcn 23374 . . . . . . 7 ((𝐴 ∈ dom vol ∧ -𝑛 ∈ ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
4946, 32, 48syl2anc 693 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
5045, 49sseldi 3601 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℂ))
5141sselda 3603 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → 𝑢 ∈ ℝ)
52 cncff 22696 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5349, 52syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5453ffvelrnda 6359 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
5551, 54syldan 487 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
56 oveq2 6658 . . . . . . . . . . . 12 (𝑦 = -𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]-𝑛))
5756ineq2d 3814 . . . . . . . . . . 11 (𝑦 = -𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]-𝑛)))
5857fveq2d 6195 . . . . . . . . . 10 (𝑦 = -𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
59 fvex 6201 . . . . . . . . . 10 (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) ∈ V
6058, 47, 59fvmpt 6282 . . . . . . . . 9 (-𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
6132, 60syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
62 inss2 3834 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ (-𝑛[,]-𝑛)
6332rexrd 10089 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ*)
64 iccid 12220 . . . . . . . . . . . . 13 (-𝑛 ∈ ℝ* → (-𝑛[,]-𝑛) = {-𝑛})
6563, 64syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]-𝑛) = {-𝑛})
6662, 65syl5sseq 3653 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛})
6732snssd 4340 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → {-𝑛} ⊆ ℝ)
6866, 67sstrd 3613 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ)
69 ovolsn 23263 . . . . . . . . . . . 12 (-𝑛 ∈ ℝ → (vol*‘{-𝑛}) = 0)
7032, 69syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘{-𝑛}) = 0)
71 ovolssnul 23255 . . . . . . . . . . 11 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛} ∧ {-𝑛} ⊆ ℝ ∧ (vol*‘{-𝑛}) = 0) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
7266, 67, 70, 71syl3anc 1326 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
73 nulmbl 23303 . . . . . . . . . 10 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
7468, 72, 73syl2anc 693 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
75 mblvol 23298 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7674, 75syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7761, 76, 723eqtrd 2660 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = 0)
7819adantr 481 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ≤ 𝐵)
7977, 78eqbrtrd 4675 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵)
80 simprr 796 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
817adantr 481 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ*)
82 iccmbl 23334 . . . . . . . . . . . 12 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
8332, 31, 82syl2anc 693 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ∈ dom vol)
84 inmbl 23310 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
8546, 83, 84syl2anc 693 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
869ffvelrni 6358 . . . . . . . . . . 11 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
878, 86sseldi 3601 . . . . . . . . . 10 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
8885, 87syl 17 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
89 xrltle 11982 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))))
9081, 88, 89syl2anc 693 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))))
9180, 90mpd 15 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
92 oveq2 6658 . . . . . . . . . . 11 (𝑦 = 𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]𝑛))
9392ineq2d 3814 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑛)))
9493fveq2d 6195 . . . . . . . . 9 (𝑦 = 𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
95 fvex 6201 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ V
9694, 47, 95fvmpt 6282 . . . . . . . 8 (𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9731, 96syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9891, 97breqtrrd 4681 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛))
9979, 98jca 554 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛)))
10032, 31, 33, 39, 41, 50, 55, 99ivthle 23225 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵)
10141sselda 3603 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → 𝑧 ∈ ℝ)
102 oveq2 6658 . . . . . . . . . . 11 (𝑦 = 𝑧 → (-𝑛[,]𝑦) = (-𝑛[,]𝑧))
103102ineq2d 3814 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑧)))
104103fveq2d 6195 . . . . . . . . 9 (𝑦 = 𝑧 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
105 fvex 6201 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) ∈ V
106104, 47, 105fvmpt 6282 . . . . . . . 8 (𝑧 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
107101, 106syl 17 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
108107eqeq1d 2624 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
10946adantr 481 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝐴 ∈ dom vol)
11032adantr 481 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → -𝑛 ∈ ℝ)
111101adantrr 753 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝑧 ∈ ℝ)
112 iccmbl 23334 . . . . . . . . . 10 ((-𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑛[,]𝑧) ∈ dom vol)
113110, 111, 112syl2anc 693 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (-𝑛[,]𝑧) ∈ dom vol)
114 inmbl 23310 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑧) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
115109, 113, 114syl2anc 693 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
116 inss1 3833 . . . . . . . . 9 (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴
117116a1i 11 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴)
118 simprr 796 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)
119 sseq1 3626 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → (𝑥𝐴 ↔ (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴))
120 fveq2 6191 . . . . . . . . . . 11 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → (vol‘𝑥) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
121120eqeq1d 2624 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((vol‘𝑥) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
122119, 121anbi12d 747 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)))
123122rspcev 3309 . . . . . . . 8 (((𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol ∧ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
124115, 117, 118, 123syl12anc 1324 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
125124expr 643 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
126108, 125sylbid 230 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
127126rexlimdva 3031 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
128100, 127mpd 15 . . 3 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
12929, 128rexlimddv 3035 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
130 simpll 790 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴 ∈ dom vol)
131 ssid 3624 . . . 4 𝐴𝐴
132131a1i 11 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴𝐴)
133 simpr 477 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐵 = (vol‘𝐴))
134133eqcomd 2628 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → (vol‘𝐴) = 𝐵)
135 sseq1 3626 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
136 fveq2 6191 . . . . . 6 (𝑥 = 𝐴 → (vol‘𝑥) = (vol‘𝐴))
137136eqeq1d 2624 . . . . 5 (𝑥 = 𝐴 → ((vol‘𝑥) = 𝐵 ↔ (vol‘𝐴) = 𝐵))
138135, 137anbi12d 747 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)))
139138rspcev 3309 . . 3 ((𝐴 ∈ dom vol ∧ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
140130, 132, 134, 139syl12anc 1324 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
14117simp3d 1075 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ≤ (vol‘𝐴))
142 xrleloe 11977 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
1436, 12, 142syl2anc 693 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
144141, 143mpbid 222 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴)))
145129, 140, 144mpjaodan 827 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  -cneg 10267  cn 11020  [,]cicc 12178  cnccncf 22679  vol*covol 23231  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-cncf 22681  df-ovol 23233  df-vol 23234
This theorem is referenced by:  itg2const2  23508
  Copyright terms: Public domain W3C validator