MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3 Structured version   Visualization version   Unicode version

Theorem 2lgslem3 25129
Description: Lemma 3 for 2lgs 25132. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 11399 . . 3  |-  ( P  e.  NN  ->  P  e.  ZZ )
2 lgsdir2lem3 25052 . . 3  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
31, 2sylan 488 . 2  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
4 elun 3753 . . 3  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  \/  ( P  mod  8 )  e. 
{ 3 ,  5 } ) )
5 ovex 6678 . . . . . . . . 9  |-  ( P  mod  8 )  e. 
_V
65elpr 4198 . . . . . . . 8  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) )
7 2lgslem2.n . . . . . . . . . . . . 13  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
872lgslem3a1 25125 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( N  mod  2 )  =  0 )
98a1d 25 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  1 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
109expcom 451 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  1  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
1110impd 447 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  1  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1272lgslem3d1 25128 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( N  mod  2 )  =  0 )
1312a1d 25 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( -.  2  ||  P  ->  ( N  mod  2 )  =  0 ) )
1413expcom 451 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  7  ->  ( P  e.  NN  ->  ( -.  2  ||  P  ->  ( N  mod  2
)  =  0 ) ) )
1514impd 447 . . . . . . . . 9  |-  ( ( P  mod  8 )  =  7  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1611, 15jaoi 394 . . . . . . . 8  |-  ( ( ( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  0 ) )
176, 16sylbi 207 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  0 ) )
1817imp 445 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  0 )
19 iftrue 4092 . . . . . . 7  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
2019adantr 481 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  0 )
2118, 20eqtr4d 2659 . . . . 5  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  ( P  e.  NN  /\ 
-.  2  ||  P
) )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
2221ex 450 . . . 4  |-  ( ( P  mod  8 )  e.  { 1 ,  7 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
235elpr 4198 . . . . 5  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  <->  ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 ) )
2472lgslem3b1 25126 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  3 )  ->  ( N  mod  2 )  =  1 )
2524expcom 451 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  3  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2672lgslem3c1 25127 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  5 )  ->  ( N  mod  2 )  =  1 )
2726expcom 451 . . . . . . . . . 10  |-  ( ( P  mod  8 )  =  5  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2825, 27jaoi 394 . . . . . . . . 9  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( P  e.  NN  ->  ( N  mod  2 )  =  1 ) )
2928imp 445 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  1 )
30 1re 10039 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
31 1lt3 11196 . . . . . . . . . . . . . . . 16  |-  1  <  3
3230, 31ltneii 10150 . . . . . . . . . . . . . . 15  |-  1  =/=  3
3332nesymi 2851 . . . . . . . . . . . . . 14  |-  -.  3  =  1
34 3re 11094 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
35 3lt7 11212 . . . . . . . . . . . . . . . 16  |-  3  <  7
3634, 35ltneii 10150 . . . . . . . . . . . . . . 15  |-  3  =/=  7
3736neii 2796 . . . . . . . . . . . . . 14  |-  -.  3  =  7
3833, 37pm3.2i 471 . . . . . . . . . . . . 13  |-  ( -.  3  =  1  /\ 
-.  3  =  7 )
39 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  1  <->  3  =  1 ) )
4039notbid 308 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  3  =  1 ) )
41 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  3  ->  (
( P  mod  8
)  =  7  <->  3  =  7 ) )
4241notbid 308 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  3  =  7 ) )
4340, 42anbi12d 747 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  3  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  3  =  1  /\  -.  3  =  7
) ) )
4438, 43mpbiri 248 . . . . . . . . . . . 12  |-  ( ( P  mod  8 )  =  3  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
45 1lt5 11203 . . . . . . . . . . . . . . . 16  |-  1  <  5
4630, 45ltneii 10150 . . . . . . . . . . . . . . 15  |-  1  =/=  5
4746nesymi 2851 . . . . . . . . . . . . . 14  |-  -.  5  =  1
48 5re 11099 . . . . . . . . . . . . . . . 16  |-  5  e.  RR
49 5lt7 11210 . . . . . . . . . . . . . . . 16  |-  5  <  7
5048, 49ltneii 10150 . . . . . . . . . . . . . . 15  |-  5  =/=  7
5150neii 2796 . . . . . . . . . . . . . 14  |-  -.  5  =  7
5247, 51pm3.2i 471 . . . . . . . . . . . . 13  |-  ( -.  5  =  1  /\ 
-.  5  =  7 )
53 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  1  <->  5  =  1 ) )
5453notbid 308 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  <->  -.  5  =  1 ) )
55 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( ( P  mod  8 )  =  5  ->  (
( P  mod  8
)  =  7  <->  5  =  7 ) )
5655notbid 308 . . . . . . . . . . . . . 14  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  7  <->  -.  5  =  7 ) )
5754, 56anbi12d 747 . . . . . . . . . . . . 13  |-  ( ( P  mod  8 )  =  5  ->  (
( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 )  <->  ( -.  5  =  1  /\  -.  5  =  7
) ) )
5852, 57mpbiri 248 . . . . . . . . . . . 12  |-  ( ( P  mod  8 )  =  5  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
5944, 58jaoi 394 . . . . . . . . . . 11  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
6059adantr 481 . . . . . . . . . 10  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
61 ioran 511 . . . . . . . . . . 11  |-  ( -.  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 )  <->  ( -.  ( P  mod  8 )  =  1  /\  -.  ( P  mod  8 )  =  7 ) )
6261, 6xchnxbir 323 . . . . . . . . . 10  |-  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  <->  ( -.  ( P  mod  8
)  =  1  /\ 
-.  ( P  mod  8 )  =  7 ) )
6360, 62sylibr 224 . . . . . . . . 9  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  -.  ( P  mod  8
)  e.  { 1 ,  7 } )
6463iffalsed 4097 . . . . . . . 8  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 )  =  1 )
6529, 64eqtr4d 2659 . . . . . . 7  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e. 
{ 1 ,  7 } ,  0 ,  1 ) )
6665a1d 25 . . . . . 6  |-  ( ( ( ( P  mod  8 )  =  3  \/  ( P  mod  8 )  =  5 )  /\  P  e.  NN )  ->  ( -.  2  ||  P  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6766expimpd 629 . . . . 5  |-  ( ( ( P  mod  8
)  =  3  \/  ( P  mod  8
)  =  5 )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
6823, 67sylbi 207 . . . 4  |-  ( ( P  mod  8 )  e.  { 3 ,  5 }  ->  (
( P  e.  NN  /\ 
-.  2  ||  P
)  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) ) )
6922, 68jaoi 394 . . 3  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  \/  ( P  mod  8
)  e.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
704, 69sylbi 207 . 2  |-  ( ( P  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( ( P  e.  NN  /\  -.  2  ||  P )  -> 
( N  mod  2
)  =  if ( ( P  mod  8
)  e.  { 1 ,  7 } , 
0 ,  1 ) ) )
713, 70mpcom 38 1  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( N  mod  2 )  =  if ( ( P  mod  8 )  e.  {
1 ,  7 } ,  0 ,  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   ifcif 4086   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   7c7 11075   8c8 11076   ZZcz 11377   |_cfl 12591    mod cmo 12668    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-dvds 14984
This theorem is referenced by:  2lgs  25132
  Copyright terms: Public domain W3C validator