Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  41prothprm Structured version   Visualization version   Unicode version

Theorem 41prothprm 41536
Description: 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.)
Hypothesis
Ref Expression
41prothprm.p  |-  P  = ; 4
1
Assertion
Ref Expression
41prothprm  |-  ( P  =  ( ( 5  x.  ( 2 ^ 3 ) )  +  1 )  /\  P  e.  Prime )

Proof of Theorem 41prothprm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 41prothprm.p . . 3  |-  P  = ; 4
1
2141prothprmlem2 41535 . 2  |-  ( ( 3 ^ ( ( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod 
P )
3 dfdec10 11497 . . 3  |- ; 4 1  =  ( (; 1 0  x.  4 )  +  1 )
4 4t2e8 11181 . . . . . . . 8  |-  ( 4  x.  2 )  =  8
5 4cn 11098 . . . . . . . . 9  |-  4  e.  CC
6 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
75, 6mulcomi 10046 . . . . . . . 8  |-  ( 4  x.  2 )  =  ( 2  x.  4 )
84, 7eqtr3i 2646 . . . . . . 7  |-  8  =  ( 2  x.  4 )
98oveq2i 6661 . . . . . 6  |-  ( 5  x.  8 )  =  ( 5  x.  (
2  x.  4 ) )
10 5cn 11100 . . . . . . 7  |-  5  e.  CC
1110, 6, 5mulassi 10049 . . . . . 6  |-  ( ( 5  x.  2 )  x.  4 )  =  ( 5  x.  (
2  x.  4 ) )
12 5t2e10 11634 . . . . . . 7  |-  ( 5  x.  2 )  = ; 1
0
1312oveq1i 6660 . . . . . 6  |-  ( ( 5  x.  2 )  x.  4 )  =  (; 1 0  x.  4 )
149, 11, 133eqtr2i 2650 . . . . 5  |-  ( 5  x.  8 )  =  (; 1 0  x.  4 )
15 cu2 12963 . . . . . . 7  |-  ( 2 ^ 3 )  =  8
1615eqcomi 2631 . . . . . 6  |-  8  =  ( 2 ^ 3 )
1716oveq2i 6661 . . . . 5  |-  ( 5  x.  8 )  =  ( 5  x.  (
2 ^ 3 ) )
1814, 17eqtr3i 2646 . . . 4  |-  (; 1 0  x.  4 )  =  ( 5  x.  ( 2 ^ 3 ) )
1918oveq1i 6660 . . 3  |-  ( (; 1
0  x.  4 )  +  1 )  =  ( ( 5  x.  ( 2 ^ 3 ) )  +  1 )
201, 3, 193eqtri 2648 . 2  |-  P  =  ( ( 5  x.  ( 2 ^ 3 ) )  +  1 )
21 simpr 477 . . 3  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  P  =  ( ( 5  x.  ( 2 ^ 3 ) )  +  1 ) )
22 3nn 11186 . . . . 5  |-  3  e.  NN
2322a1i 11 . . . 4  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  3  e.  NN )
24 5nn 11188 . . . . 5  |-  5  e.  NN
2524a1i 11 . . . 4  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  5  e.  NN )
26 5lt8 11217 . . . . . 6  |-  5  <  8
2726, 15breqtrri 4680 . . . . 5  |-  5  <  ( 2 ^ 3 )
2827a1i 11 . . . 4  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  5  <  ( 2 ^ 3 ) )
29 3z 11410 . . . . . . 7  |-  3  e.  ZZ
3029a1i 11 . . . . . 6  |-  ( ( ( 3 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P )  ->  3  e.  ZZ )
31 oveq1 6657 . . . . . . . . 9  |-  ( x  =  3  ->  (
x ^ ( ( P  -  1 )  /  2 ) )  =  ( 3 ^ ( ( P  - 
1 )  /  2
) ) )
3231oveq1d 6665 . . . . . . . 8  |-  ( x  =  3  ->  (
( x ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 3 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
3332eqeq1d 2624 . . . . . . 7  |-  ( x  =  3  ->  (
( ( x ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  <->  ( ( 3 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P ) ) )
3433adantl 482 . . . . . 6  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  x  =  3
)  ->  ( (
( x ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P )  <->  ( (
3 ^ ( ( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod 
P ) ) )
35 id 22 . . . . . 6  |-  ( ( ( 3 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P )  ->  (
( 3 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P ) )
3630, 34, 35rspcedvd 3317 . . . . 5  |-  ( ( ( 3 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P )  ->  E. x  e.  ZZ  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )
3736adantr 481 . . . 4  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  E. x  e.  ZZ  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )
3823, 25, 21, 28, 37proththd 41531 . . 3  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  P  e.  Prime )
3921, 38jca 554 . 2  |-  ( ( ( ( 3 ^ ( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  /\  P  =  (
( 5  x.  (
2 ^ 3 ) )  +  1 ) )  ->  ( P  =  ( ( 5  x.  ( 2 ^ 3 ) )  +  1 )  /\  P  e.  Prime ) )
402, 20, 39mp2an 708 1  |-  ( P  =  ( ( 5  x.  ( 2 ^ 3 ) )  +  1 )  /\  P  e.  Prime )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   8c8 11076   ZZcz 11377  ;cdc 11493    mod cmo 12668   ^cexp 12860   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator