Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththd Structured version   Visualization version   Unicode version

Theorem proththd 41531
Description: Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 15610), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
proththd.n  |-  ( ph  ->  N  e.  NN )
proththd.k  |-  ( ph  ->  K  e.  NN )
proththd.p  |-  ( ph  ->  P  =  ( ( K  x.  ( 2 ^ N ) )  +  1 ) )
proththd.l  |-  ( ph  ->  K  <  ( 2 ^ N ) )
proththd.x  |-  ( ph  ->  E. x  e.  ZZ  ( ( x ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )
)
Assertion
Ref Expression
proththd  |-  ( ph  ->  P  e.  Prime )
Distinct variable groups:    x, N    x, P    ph, x
Allowed substitution hint:    K( x)

Proof of Theorem proththd
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 2nn 11185 . . . 4  |-  2  e.  NN
21a1i 11 . . 3  |-  ( ph  ->  2  e.  NN )
3 proththd.n . . . 4  |-  ( ph  ->  N  e.  NN )
43nnnn0d 11351 . . 3  |-  ( ph  ->  N  e.  NN0 )
52, 4nnexpcld 13030 . 2  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
6 proththd.k . 2  |-  ( ph  ->  K  e.  NN )
7 proththd.l . 2  |-  ( ph  ->  K  <  ( 2 ^ N ) )
8 proththd.p . . 3  |-  ( ph  ->  P  =  ( ( K  x.  ( 2 ^ N ) )  +  1 ) )
96nncnd 11036 . . . . 5  |-  ( ph  ->  K  e.  CC )
105nncnd 11036 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  e.  CC )
119, 10mulcomd 10061 . . . 4  |-  ( ph  ->  ( K  x.  (
2 ^ N ) )  =  ( ( 2 ^ N )  x.  K ) )
1211oveq1d 6665 . . 3  |-  ( ph  ->  ( ( K  x.  ( 2 ^ N
) )  +  1 )  =  ( ( ( 2 ^ N
)  x.  K )  +  1 ) )
138, 12eqtrd 2656 . 2  |-  ( ph  ->  P  =  ( ( ( 2 ^ N
)  x.  K )  +  1 ) )
14 simpr 477 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  Prime )
15 2prm 15405 . . . . . 6  |-  2  e.  Prime
1615a1i 11 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  2  e.  Prime )
173adantr 481 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  NN )
18 prmdvdsexpb 15428 . . . . 5  |-  ( ( p  e.  Prime  /\  2  e.  Prime  /\  N  e.  NN )  ->  ( p 
||  ( 2 ^ N )  <->  p  = 
2 ) )
1914, 16, 17, 18syl3anc 1326 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( 2 ^ N
)  <->  p  =  2
) )
20 proththd.x . . . . . 6  |-  ( ph  ->  E. x  e.  ZZ  ( ( x ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )
)
213, 6, 8proththdlem 41530 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( P  e.  NN  /\  1  <  P  /\  ( ( P  - 
1 )  /  2
)  e.  NN ) )
2221simp1d 1073 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  P  e.  NN )
2322nncnd 11036 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  P  e.  CC )
24 peano2cnm 10347 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  CC  ->  ( P  -  1 )  e.  CC )
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( P  -  1 )  e.  CC )
2625adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( P  -  1 )  e.  CC )
27 2cnd 11093 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ZZ )  ->  2  e.  CC )
28 2ne0 11113 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
2928a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ZZ )  ->  2  =/=  0 )
3026, 27, 29divcan1d 10802 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( ( P  -  1 )  /  2 )  x.  2 )  =  ( P  -  1 ) )
3130eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( P  -  1 )  =  ( ( ( P  -  1 )  / 
2 )  x.  2 ) )
3231oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x ^ ( P  - 
1 ) )  =  ( x ^ (
( ( P  - 
1 )  /  2
)  x.  2 ) ) )
33 zcn 11382 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
3433adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ZZ )  ->  x  e.  CC )
35 2nn0 11309 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
3635a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ZZ )  ->  2  e. 
NN0 )
3721simp3d 1075 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
3837nnnn0d 11351 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
3938adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( P  -  1 )  /  2 )  e. 
NN0 )
4034, 36, 39expmuld 13011 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x ^ ( ( ( P  -  1 )  /  2 )  x.  2 ) )  =  ( ( x ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4132, 40eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x ^ ( P  - 
1 ) )  =  ( ( x ^
( ( P  - 
1 )  /  2
) ) ^ 2 ) )
4241ad4ant13 1292 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
x ^ ( P  -  1 ) )  =  ( ( x ^ ( ( P  -  1 )  / 
2 ) ) ^
2 ) )
4342oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( x ^ ( P  -  1 ) )  mod  P )  =  ( ( ( x ^ ( ( P  -  1 )  /  2 ) ) ^ 2 )  mod 
P ) )
4438adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  = 
2 )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
4544anim1i 592 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( ( ( P  -  1 )  / 
2 )  e.  NN0  /\  x  e.  ZZ ) )
4645ancomd 467 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( x  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )
)
47 zexpcl 12875 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( x ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
4846, 47syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( x ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
4948adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
x ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ )
5022nnrpd 11870 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  RR+ )
5150ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  P  e.  RR+ )
5221simp2d 1074 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  P )
5352ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  1  <  P )
54 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( x ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( -u 1  mod  P ) )
5549, 51, 53, 54modexp2m1d 41529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( x ^
( ( P  - 
1 )  /  2
) ) ^ 2 )  mod  P )  =  1 )
5643, 55eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( x ^ ( P  -  1 ) )  mod  P )  =  1 )
57 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  2  ->  (
( P  -  1 )  /  p )  =  ( ( P  -  1 )  / 
2 ) )
5857eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  2  ->  (
( ( P  - 
1 )  /  p
)  e.  NN0  <->  ( ( P  -  1 )  /  2 )  e. 
NN0 ) )
5958adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  = 
2 )  ->  (
( ( P  - 
1 )  /  p
)  e.  NN0  <->  ( ( P  -  1 )  /  2 )  e. 
NN0 ) )
6044, 59mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  = 
2 )  ->  (
( P  -  1 )  /  p )  e.  NN0 )
6160anim2i 593 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  ( ph  /\  p  =  2 ) )  -> 
( x  e.  ZZ  /\  ( ( P  - 
1 )  /  p
)  e.  NN0 )
)
6261ancoms 469 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( x  e.  ZZ  /\  ( ( P  - 
1 )  /  p
)  e.  NN0 )
)
63 zexpcl 12875 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( ( P  - 
1 )  /  p
)  e.  NN0 )  ->  ( x ^ (
( P  -  1 )  /  p ) )  e.  ZZ )
6462, 63syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( x ^ (
( P  -  1 )  /  p ) )  e.  ZZ )
6564zred 11482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( x ^ (
( P  -  1 )  /  p ) )  e.  RR )
6665adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
x ^ ( ( P  -  1 )  /  p ) )  e.  RR )
67 1red 10055 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  1  e.  RR )
6867renegcld 10457 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  -u 1  e.  RR )
69 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  =  p  ->  (
( P  -  1 )  /  2 )  =  ( ( P  -  1 )  /  p ) )
7069eqcoms 2630 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  2  ->  (
( P  -  1 )  /  2 )  =  ( ( P  -  1 )  /  p ) )
7170oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  2  ->  (
x ^ ( ( P  -  1 )  /  2 ) )  =  ( x ^
( ( P  - 
1 )  /  p
) ) )
7271oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( p  =  2  ->  (
( x ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( x ^ ( ( P  -  1 )  /  p ) )  mod 
P ) )
7372eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( p  =  2  ->  (
( ( x ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  <->  ( ( x ^ (
( P  -  1 )  /  p ) )  mod  P )  =  ( -u 1  mod  P ) ) )
7473adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  = 
2 )  ->  (
( ( x ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  <->  ( ( x ^ (
( P  -  1 )  /  p ) )  mod  P )  =  ( -u 1  mod  P ) ) )
7574adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
)  <->  ( ( x ^ ( ( P  -  1 )  /  p ) )  mod 
P )  =  (
-u 1  mod  P
) ) )
7675biimpa 501 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( x ^ (
( P  -  1 )  /  p ) )  mod  P )  =  ( -u 1  mod  P ) )
77 eqidd 2623 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
1  mod  P )  =  ( 1  mod 
P ) )
7866, 68, 67, 67, 51, 76, 77modsub12d 12727 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( x ^
( ( P  - 
1 )  /  p
) )  -  1 )  mod  P )  =  ( ( -u
1  -  1 )  mod  P ) )
7978oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( ( x ^ ( ( P  -  1 )  /  p ) )  - 
1 )  mod  P
)  gcd  P )  =  ( ( (
-u 1  -  1 )  mod  P )  gcd  P ) )
80 peano2zm 11420 . . . . . . . . . . . . . 14  |-  ( ( x ^ ( ( P  -  1 )  /  p ) )  e.  ZZ  ->  (
( x ^ (
( P  -  1 )  /  p ) )  -  1 )  e.  ZZ )
8164, 80syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( ( x ^
( ( P  - 
1 )  /  p
) )  -  1 )  e.  ZZ )
8222ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  P  e.  NN )
83 modgcd 15253 . . . . . . . . . . . . 13  |-  ( ( ( ( x ^
( ( P  - 
1 )  /  p
) )  -  1 )  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( ( x ^ ( ( P  -  1 )  /  p ) )  -  1 )  mod 
P )  gcd  P
)  =  ( ( ( x ^ (
( P  -  1 )  /  p ) )  -  1 )  gcd  P ) )
8481, 82, 83syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( ( ( ( x ^ ( ( P  -  1 )  /  p ) )  -  1 )  mod 
P )  gcd  P
)  =  ( ( ( x ^ (
( P  -  1 )  /  p ) )  -  1 )  gcd  P ) )
8584adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( ( x ^ ( ( P  -  1 )  /  p ) )  - 
1 )  mod  P
)  gcd  P )  =  ( ( ( x ^ ( ( P  -  1 )  /  p ) )  -  1 )  gcd 
P ) )
86 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
87 negdi2 10339 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  1  e.  CC )  -> 
-u ( 1  +  1 )  =  (
-u 1  -  1 ) )
8887eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  CC  /\  1  e.  CC )  ->  ( -u 1  -  1 )  =  -u ( 1  +  1 ) )
8986, 86, 88mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( -u
1  -  1 )  =  -u ( 1  +  1 )
90 1p1e2 11134 . . . . . . . . . . . . . . . . . 18  |-  ( 1  +  1 )  =  2
9190negeqi 10274 . . . . . . . . . . . . . . . . 17  |-  -u (
1  +  1 )  =  -u 2
9289, 91eqtri 2644 . . . . . . . . . . . . . . . 16  |-  ( -u
1  -  1 )  =  -u 2
9392a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( -u 1  -  1 )  =  -u
2 )
9493oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( -u 1  -  1 )  mod 
P )  =  (
-u 2  mod  P
) )
9594oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( -u
1  -  1 )  mod  P )  gcd 
P )  =  ( ( -u 2  mod 
P )  gcd  P
) )
96 nnnegz 11380 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  NN  ->  -u 2  e.  ZZ )
972, 96syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  -> 
-u 2  e.  ZZ )
98 modgcd 15253 . . . . . . . . . . . . . . 15  |-  ( (
-u 2  e.  ZZ  /\  P  e.  NN )  ->  ( ( -u
2  mod  P )  gcd  P )  =  (
-u 2  gcd  P
) )
9997, 22, 98syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( -u 2  mod  P )  gcd  P
)  =  ( -u
2  gcd  P )
)
100 2z 11409 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
10122nnzd 11481 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  ZZ )
102 neggcd 15244 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( -u 2  gcd 
P )  =  ( 2  gcd  P ) )
103100, 101, 102sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( -u 2  gcd 
P )  =  ( 2  gcd  P ) )
104 nnz 11399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  NN  ->  P  e.  ZZ )
105 oddm1d2 15084 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  e.  NN  ->  ( -.  2  ||  P  <->  ( ( P  -  1 )  /  2 )  e.  ZZ ) )
107106biimprd 238 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  NN  ->  (
( ( P  - 
1 )  /  2
)  e.  ZZ  ->  -.  2  ||  P ) )
108 nnz 11399 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  -  1 )  /  2 )  e.  NN  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
109107, 108impel 485 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  NN )  ->  -.  2  ||  P )
110 isoddgcd1 15439 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  e.  ZZ  ->  ( -.  2  ||  P  <->  ( 2  gcd  P )  =  1 ) )
111104, 110syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  NN  ->  ( -.  2  ||  P  <->  ( 2  gcd  P )  =  1 ) )
112111adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  NN )  ->  ( -.  2  ||  P  <->  ( 2  gcd 
P )  =  1 ) )
113109, 112mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  NN )  ->  ( 2  gcd 
P )  =  1 )
1141133adant2 1080 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  NN  /\  1  <  P  /\  (
( P  -  1 )  /  2 )  e.  NN )  -> 
( 2  gcd  P
)  =  1 )
11521, 114syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  gcd  P
)  =  1 )
116103, 115eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -u 2  gcd 
P )  =  1 )
11799, 116eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( -u 2  mod  P )  gcd  P
)  =  1 )
11895, 117eqtrd 2656 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( -u
1  -  1 )  mod  P )  gcd 
P )  =  1 )
119118ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( -u 1  -  1 )  mod 
P )  gcd  P
)  =  1 )
12079, 85, 1193eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( x ^
( ( P  - 
1 )  /  p
) )  -  1 )  gcd  P )  =  1 )
12156, 120jca 554 . . . . . . . . 9  |-  ( ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  /\  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
) )  ->  (
( ( x ^
( P  -  1 ) )  mod  P
)  =  1  /\  ( ( ( x ^ ( ( P  -  1 )  /  p ) )  - 
1 )  gcd  P
)  =  1 ) )
122121ex 450 . . . . . . . 8  |-  ( ( ( ph  /\  p  =  2 )  /\  x  e.  ZZ )  ->  ( ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
)  ->  ( (
( x ^ ( P  -  1 ) )  mod  P )  =  1  /\  (
( ( x ^
( ( P  - 
1 )  /  p
) )  -  1 )  gcd  P )  =  1 ) ) )
123122reximdva 3017 . . . . . . 7  |-  ( (
ph  /\  p  = 
2 )  ->  ( E. x  e.  ZZ  ( ( x ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( -u
1  mod  P )  ->  E. x  e.  ZZ  ( ( ( x ^ ( P  - 
1 ) )  mod 
P )  =  1  /\  ( ( ( x ^ ( ( P  -  1 )  /  p ) )  -  1 )  gcd 
P )  =  1 ) ) )
124123ex 450 . . . . . 6  |-  ( ph  ->  ( p  =  2  ->  ( E. x  e.  ZZ  ( ( x ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  (
-u 1  mod  P
)  ->  E. x  e.  ZZ  ( ( ( x ^ ( P  -  1 ) )  mod  P )  =  1  /\  ( ( ( x ^ (
( P  -  1 )  /  p ) )  -  1 )  gcd  P )  =  1 ) ) ) )
12520, 124mpid 44 . . . . 5  |-  ( ph  ->  ( p  =  2  ->  E. x  e.  ZZ  ( ( ( x ^ ( P  - 
1 ) )  mod 
P )  =  1  /\  ( ( ( x ^ ( ( P  -  1 )  /  p ) )  -  1 )  gcd 
P )  =  1 ) ) )
126125adantr 481 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  =  2  ->  E. x  e.  ZZ  ( ( ( x ^ ( P  -  1 ) )  mod  P )  =  1  /\  ( ( ( x ^ (
( P  -  1 )  /  p ) )  -  1 )  gcd  P )  =  1 ) ) )
12719, 126sylbid 230 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( 2 ^ N
)  ->  E. x  e.  ZZ  ( ( ( x ^ ( P  -  1 ) )  mod  P )  =  1  /\  ( ( ( x ^ (
( P  -  1 )  /  p ) )  -  1 )  gcd  P )  =  1 ) ) )
128127ralrimiva 2966 . 2  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  ( 2 ^ N )  ->  E. x  e.  ZZ  ( ( ( x ^ ( P  - 
1 ) )  mod 
P )  =  1  /\  ( ( ( x ^ ( ( P  -  1 )  /  p ) )  -  1 )  gcd 
P )  =  1 ) ) )
1295, 6, 7, 13, 128pockthg 15610 1  |-  ( ph  ->  P  e.  Prime )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   RR+crp 11832    mod cmo 12668   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542
This theorem is referenced by:  41prothprm  41536
  Copyright terms: Public domain W3C validator