MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem17 Structured version   Visualization version   Unicode version

Theorem 4sqlem17 15665
Description: Lemma for 4sq 15668. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
4sq.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4sq.a  |-  ( ph  ->  A  e.  ZZ )
4sq.b  |-  ( ph  ->  B  e.  ZZ )
4sq.c  |-  ( ph  ->  C  e.  ZZ )
4sq.d  |-  ( ph  ->  D  e.  ZZ )
4sq.e  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.f  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.g  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.h  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.r  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
4sq.p  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
Assertion
Ref Expression
4sqlem17  |-  -.  ph
Distinct variable groups:    w, n, x, y, z    B, n   
n, E    n, G    n, H    A, n    C, n    D, n    n, F    i, n, M    n, N    P, i, n    ph, n    S, i, n    R, i
Allowed substitution hints:    ph( x, y, z, w, i)    A( x, y, z, w, i)    B( x, y, z, w, i)    C( x, y, z, w, i)    D( x, y, z, w, i)    P( x, y, z, w)    R( x, y, z, w, n)    S( x, y, z, w)    T( x, y, z, w, i, n)    E( x, y, z, w, i)    F( x, y, z, w, i)    G( x, y, z, w, i)    H( x, y, z, w, i)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem17
StepHypRef Expression
1 4sq.1 . . . . . . 7  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . . . . . 7  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
5 4sq.5 . . . . . . 7  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
6 4sq.6 . . . . . . 7  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
7 4sq.7 . . . . . . 7  |-  M  = inf ( T ,  RR ,  <  )
8 4sq.m . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
9 4sq.a . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
10 4sq.b . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
11 4sq.c . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
12 4sq.d . . . . . . 7  |-  ( ph  ->  D  e.  ZZ )
13 4sq.e . . . . . . 7  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
14 4sq.f . . . . . . 7  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
15 4sq.g . . . . . . 7  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
16 4sq.h . . . . . . 7  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
17 4sq.r . . . . . . 7  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
18 4sq.p . . . . . . 7  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 184sqlem16 15664 . . . . . 6  |-  ( ph  ->  ( R  <_  M  /\  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) ) )
2019simpld 475 . . . . 5  |-  ( ph  ->  R  <_  M )
21 ssrab2 3687 . . . . . . . . 9  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
226, 21eqsstri 3635 . . . . . . . 8  |-  T  C_  NN
23 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
2422, 23sseqtri 3637 . . . . . . 7  |-  T  C_  ( ZZ>= `  1 )
251, 2, 3, 4, 5, 6, 74sqlem13 15661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
2625simpld 475 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  =/=  (/) )
27 infssuzcl 11772 . . . . . . . . . . . . . . 15  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  -> inf ( T ,  RR ,  <  )  e.  T )
2824, 26, 27sylancr 695 . . . . . . . . . . . . . 14  |-  ( ph  -> inf ( T ,  RR ,  <  )  e.  T
)
297, 28syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  T )
3022, 29sseldi 3601 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
3130nnred 11035 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
3225simprd 479 . . . . . . . . . . 11  |-  ( ph  ->  M  <  P )
3331, 32ltned 10173 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  P )
3430nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  CC )
3534sqvald 13005 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
3635breq1d 4663 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M ^
2 )  ||  ( M  x.  P )  <->  ( M  x.  M ) 
||  ( M  x.  P ) ) )
3730nnzd 11481 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
38 prmz 15389 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
394, 38syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  ZZ )
4030nnne0d 11065 . . . . . . . . . . . . 13  |-  ( ph  ->  M  =/=  0 )
41 dvdscmulr 15010 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( ( M  x.  M )  ||  ( M  x.  P )  <->  M 
||  P ) )
4237, 39, 37, 40, 41syl112anc 1330 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  x.  M )  ||  ( M  x.  P )  <->  M 
||  P ) )
43 dvdsprm 15415 . . . . . . . . . . . . 13  |-  ( ( M  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  ( M  ||  P  <->  M  =  P ) )
448, 4, 43syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  ||  P  <->  M  =  P ) )
4536, 42, 443bitrd 294 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M ^
2 )  ||  ( M  x.  P )  <->  M  =  P ) )
4645necon3bbid 2831 . . . . . . . . . 10  |-  ( ph  ->  ( -.  ( M ^ 2 )  ||  ( M  x.  P
)  <->  M  =/=  P
) )
4733, 46mpbird 247 . . . . . . . . 9  |-  ( ph  ->  -.  ( M ^
2 )  ||  ( M  x.  P )
)
481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 184sqlem14 15662 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  NN0 )
49 elnn0 11294 . . . . . . . . . . . 12  |-  ( R  e.  NN0  <->  ( R  e.  NN  \/  R  =  0 ) )
5048, 49sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( R  e.  NN  \/  R  =  0
) )
5150ord 392 . . . . . . . . . 10  |-  ( ph  ->  ( -.  R  e.  NN  ->  R  = 
0 ) )
52 orc 400 . . . . . . . . . . 11  |-  ( R  =  0  ->  ( R  =  0  \/  R  =  M )
)
5319simprd 479 . . . . . . . . . . 11  |-  ( ph  ->  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) )
5452, 53syl5 34 . . . . . . . . . 10  |-  ( ph  ->  ( R  =  0  ->  ( M ^
2 )  ||  ( M  x.  P )
) )
5551, 54syld 47 . . . . . . . . 9  |-  ( ph  ->  ( -.  R  e.  NN  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) )
5647, 55mt3d 140 . . . . . . . 8  |-  ( ph  ->  R  e.  NN )
57 gzreim 15643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
589, 10, 57syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  ZZ[_i] )
59 gzcn 15636 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +  ( _i  x.  B ) )  e.  ZZ[_i]  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
6058, 59syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
6160absvalsq2d 14182 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) ) )
629zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  RR )
6310zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  B  e.  RR )
6462, 63crred 13971 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
6564oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( Re `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( A ^ 2 ) )
6662, 63crimd 13972 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
6766oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( Im `  ( A  +  (
_i  x.  B )
) ) ^ 2 )  =  ( B ^ 2 ) )
6865, 67oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( Re
`  ( A  +  ( _i  x.  B
) ) ) ^
2 )  +  ( ( Im `  ( A  +  ( _i  x.  B ) ) ) ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
6961, 68eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( A ^
2 )  +  ( B ^ 2 ) ) )
70 gzreim 15643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
7111, 12, 70syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  ZZ[_i] )
72 gzcn 15636 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +  ( _i  x.  D ) )  e.  ZZ[_i]  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
7371, 72syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( C  +  ( _i  x.  D ) )  e.  CC )
7473absvalsq2d 14182 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
7511zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  C  e.  RR )
7612zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  D  e.  RR )
7775, 76crred 13971 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Re `  ( C  +  ( _i  x.  D ) ) )  =  C )
7877oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( Re `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( C ^ 2 ) )
7975, 76crimd 13972 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( Im `  ( C  +  ( _i  x.  D ) ) )  =  D )
8079oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( Im `  ( C  +  (
_i  x.  D )
) ) ^ 2 )  =  ( D ^ 2 ) )
8178, 80oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( Re
`  ( C  +  ( _i  x.  D
) ) ) ^
2 )  +  ( ( Im `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )
8274, 81eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 )  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
8369, 82oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) ) )
8418, 83eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) ) )
8584oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  x.  P )  /  M
)  =  ( ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  /  M ) )
86 prmnn 15388 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
874, 86syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
8887nncnd 11036 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
8988, 34, 40divcan3d 10806 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  x.  P )  /  M
)  =  P )
9085, 89eqtr3d 2658 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  /  M )  =  P )
919, 30, 134sqlem5 15646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( E  e.  ZZ  /\  ( ( A  -  E )  /  M
)  e.  ZZ ) )
9291simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E  e.  ZZ )
9310, 30, 144sqlem5 15646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ ) )
9493simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ZZ )
95 gzreim 15643 . . . . . . . . . . . . . . . . . 18  |-  ( ( E  e.  ZZ  /\  F  e.  ZZ )  ->  ( E  +  ( _i  x.  F ) )  e.  ZZ[_i] )
9692, 94, 95syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E  +  ( _i  x.  F ) )  e.  ZZ[_i] )
97 gzcn 15636 . . . . . . . . . . . . . . . . 17  |-  ( ( E  +  ( _i  x.  F ) )  e.  ZZ[_i]  ->  ( E  +  ( _i  x.  F ) )  e.  CC )
9896, 97syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E  +  ( _i  x.  F ) )  e.  CC )
9998absvalsq2d 14182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  =  ( ( ( Re
`  ( E  +  ( _i  x.  F
) ) ) ^
2 )  +  ( ( Im `  ( E  +  ( _i  x.  F ) ) ) ^ 2 ) ) )
10092zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  E  e.  RR )
10194zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  RR )
102100, 101crred 13971 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Re `  ( E  +  ( _i  x.  F ) ) )  =  E )
103102oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( Re `  ( E  +  (
_i  x.  F )
) ) ^ 2 )  =  ( E ^ 2 ) )
104100, 101crimd 13972 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Im `  ( E  +  ( _i  x.  F ) ) )  =  F )
105104oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( Im `  ( E  +  (
_i  x.  F )
) ) ^ 2 )  =  ( F ^ 2 ) )
106103, 105oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( Re
`  ( E  +  ( _i  x.  F
) ) ) ^
2 )  +  ( ( Im `  ( E  +  ( _i  x.  F ) ) ) ^ 2 ) )  =  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
10799, 106eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  =  ( ( E ^
2 )  +  ( F ^ 2 ) ) )
10811, 30, 154sqlem5 15646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( G  e.  ZZ  /\  ( ( C  -  G )  /  M
)  e.  ZZ ) )
109108simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  e.  ZZ )
11012, 30, 164sqlem5 15646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( H  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ ) )
111110simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  H  e.  ZZ )
112 gzreim 15643 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  ZZ  /\  H  e.  ZZ )  ->  ( G  +  ( _i  x.  H ) )  e.  ZZ[_i] )
113109, 111, 112syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G  +  ( _i  x.  H ) )  e.  ZZ[_i] )
114 gzcn 15636 . . . . . . . . . . . . . . . . 17  |-  ( ( G  +  ( _i  x.  H ) )  e.  ZZ[_i]  ->  ( G  +  ( _i  x.  H ) )  e.  CC )
115113, 114syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( G  +  ( _i  x.  H ) )  e.  CC )
116115absvalsq2d 14182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 )  =  ( ( ( Re
`  ( G  +  ( _i  x.  H
) ) ) ^
2 )  +  ( ( Im `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) ) )
117109zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  e.  RR )
118111zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  H  e.  RR )
119117, 118crred 13971 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Re `  ( G  +  ( _i  x.  H ) ) )  =  G )
120119oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( Re `  ( G  +  (
_i  x.  H )
) ) ^ 2 )  =  ( G ^ 2 ) )
121117, 118crimd 13972 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Im `  ( G  +  ( _i  x.  H ) ) )  =  H )
122121oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( Im `  ( G  +  (
_i  x.  H )
) ) ^ 2 )  =  ( H ^ 2 ) )
123120, 122oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( Re
`  ( G  +  ( _i  x.  H
) ) ) ^
2 )  +  ( ( Im `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  =  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )
124116, 123eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 )  =  ( ( G ^
2 )  +  ( H ^ 2 ) ) )
125107, 124oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  =  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) )
126125oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  /  M )  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
) )
127126, 17syl6eqr 2674 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  /  M )  =  R )
12890, 127oveq12d 6668 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  /  M )  x.  ( ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  /  M ) )  =  ( P  x.  R ) )
12956nncnd 11036 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CC )
13088, 129mulcomd 10061 . . . . . . . . . 10  |-  ( ph  ->  ( P  x.  R
)  =  ( R  x.  P ) )
131128, 130eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  /  M )  x.  ( ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  /  M ) )  =  ( R  x.  P ) )
132 eqid 2622 . . . . . . . . . 10  |-  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  =  ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )
133 eqid 2622 . . . . . . . . . 10  |-  ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  =  ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )
1349zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  CC )
135 ax-icn 9995 . . . . . . . . . . . . . . . 16  |-  _i  e.  CC
13610zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  CC )
137 mulcl 10020 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
138135, 136, 137sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _i  x.  B
)  e.  CC )
13992zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E  e.  CC )
14094zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e.  CC )
141 mulcl 10020 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  F  e.  CC )  ->  ( _i  x.  F
)  e.  CC )
142135, 140, 141sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _i  x.  F
)  e.  CC )
143134, 138, 139, 142addsub4d 10439 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  -  ( E  +  ( _i  x.  F ) ) )  =  ( ( A  -  E )  +  ( ( _i  x.  B )  -  (
_i  x.  F )
) ) )
144135a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  _i  e.  CC )
145144, 136, 140subdid 10486 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _i  x.  ( B  -  F )
)  =  ( ( _i  x.  B )  -  ( _i  x.  F ) ) )
146145oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  -  E )  +  ( _i  x.  ( B  -  F ) ) )  =  ( ( A  -  E )  +  ( ( _i  x.  B )  -  ( _i  x.  F
) ) ) )
147143, 146eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  +  ( _i  x.  B
) )  -  ( E  +  ( _i  x.  F ) ) )  =  ( ( A  -  E )  +  ( _i  x.  ( B  -  F )
) ) )
148147oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( E  +  (
_i  x.  F )
) )  /  M
)  =  ( ( ( A  -  E
)  +  ( _i  x.  ( B  -  F ) ) )  /  M ) )
149134, 139subcld 10392 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  E
)  e.  CC )
150136, 140subcld 10392 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  F
)  e.  CC )
151 mulcl 10020 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( B  -  F
)  e.  CC )  ->  ( _i  x.  ( B  -  F
) )  e.  CC )
152135, 150, 151sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( _i  x.  ( B  -  F )
)  e.  CC )
153149, 152, 34, 40divdird 10839 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  E )  +  ( _i  x.  ( B  -  F )
) )  /  M
)  =  ( ( ( A  -  E
)  /  M )  +  ( ( _i  x.  ( B  -  F ) )  /  M ) ) )
154144, 150, 34, 40divassd 10836 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( _i  x.  ( B  -  F
) )  /  M
)  =  ( _i  x.  ( ( B  -  F )  /  M ) ) )
155154oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  E )  /  M )  +  ( ( _i  x.  ( B  -  F )
)  /  M ) )  =  ( ( ( A  -  E
)  /  M )  +  ( _i  x.  ( ( B  -  F )  /  M
) ) ) )
156148, 153, 1553eqtrd 2660 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( E  +  (
_i  x.  F )
) )  /  M
)  =  ( ( ( A  -  E
)  /  M )  +  ( _i  x.  ( ( B  -  F )  /  M
) ) ) )
15791simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  -  E )  /  M
)  e.  ZZ )
15893simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  -  F )  /  M
)  e.  ZZ )
159 gzreim 15643 . . . . . . . . . . . 12  |-  ( ( ( ( A  -  E )  /  M
)  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ )  ->  ( ( ( A  -  E )  /  M )  +  ( _i  x.  (
( B  -  F
)  /  M ) ) )  e.  ZZ[_i] )
160157, 158, 159syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  -  E )  /  M )  +  ( _i  x.  ( ( B  -  F )  /  M ) ) )  e.  ZZ[_i] )
161156, 160eqeltrd 2701 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( E  +  (
_i  x.  F )
) )  /  M
)  e.  ZZ[_i] )
16211zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  CC )
16312zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  CC )
164 mulcl 10020 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  D  e.  CC )  ->  ( _i  x.  D
)  e.  CC )
165135, 163, 164sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _i  x.  D
)  e.  CC )
166109zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e.  CC )
167111zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  H  e.  CC )
168 mulcl 10020 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  H  e.  CC )  ->  ( _i  x.  H
)  e.  CC )
169135, 167, 168sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _i  x.  H
)  e.  CC )
170162, 165, 166, 169addsub4d 10439 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  +  ( _i  x.  D
) )  -  ( G  +  ( _i  x.  H ) ) )  =  ( ( C  -  G )  +  ( ( _i  x.  D )  -  (
_i  x.  H )
) ) )
171144, 163, 167subdid 10486 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( _i  x.  ( D  -  H )
)  =  ( ( _i  x.  D )  -  ( _i  x.  H ) ) )
172171oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( C  -  G )  +  ( _i  x.  ( D  -  H ) ) )  =  ( ( C  -  G )  +  ( ( _i  x.  D )  -  ( _i  x.  H
) ) ) )
173170, 172eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  +  ( _i  x.  D
) )  -  ( G  +  ( _i  x.  H ) ) )  =  ( ( C  -  G )  +  ( _i  x.  ( D  -  H )
) ) )
174173oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  +  ( _i  x.  D ) )  -  ( G  +  (
_i  x.  H )
) )  /  M
)  =  ( ( ( C  -  G
)  +  ( _i  x.  ( D  -  H ) ) )  /  M ) )
175162, 166subcld 10392 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  -  G
)  e.  CC )
176163, 167subcld 10392 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  -  H
)  e.  CC )
177 mulcl 10020 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( D  -  H
)  e.  CC )  ->  ( _i  x.  ( D  -  H
) )  e.  CC )
178135, 176, 177sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( _i  x.  ( D  -  H )
)  e.  CC )
179175, 178, 34, 40divdird 10839 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  -  G )  +  ( _i  x.  ( D  -  H )
) )  /  M
)  =  ( ( ( C  -  G
)  /  M )  +  ( ( _i  x.  ( D  -  H ) )  /  M ) ) )
180144, 176, 34, 40divassd 10836 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( _i  x.  ( D  -  H
) )  /  M
)  =  ( _i  x.  ( ( D  -  H )  /  M ) ) )
181180oveq2d 6666 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  -  G )  /  M )  +  ( ( _i  x.  ( D  -  H )
)  /  M ) )  =  ( ( ( C  -  G
)  /  M )  +  ( _i  x.  ( ( D  -  H )  /  M
) ) ) )
182174, 179, 1813eqtrd 2660 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  +  ( _i  x.  D ) )  -  ( G  +  (
_i  x.  H )
) )  /  M
)  =  ( ( ( C  -  G
)  /  M )  +  ( _i  x.  ( ( D  -  H )  /  M
) ) ) )
183108simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  -  G )  /  M
)  e.  ZZ )
184110simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( D  -  H )  /  M
)  e.  ZZ )
185 gzreim 15643 . . . . . . . . . . . 12  |-  ( ( ( ( C  -  G )  /  M
)  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ )  ->  ( ( ( C  -  G )  /  M )  +  ( _i  x.  (
( D  -  H
)  /  M ) ) )  e.  ZZ[_i] )
186183, 184, 185syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  -  G )  /  M )  +  ( _i  x.  ( ( D  -  H )  /  M ) ) )  e.  ZZ[_i] )
187182, 186eqeltrd 2701 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  +  ( _i  x.  D ) )  -  ( G  +  (
_i  x.  H )
) )  /  M
)  e.  ZZ[_i] )
18887nnnn0d 11351 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  NN0 )
18990, 188eqeltrd 2701 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  /  M )  e. 
NN0 )
1901, 58, 71, 96, 113, 132, 133, 30, 161, 187, 189mul4sqlem 15657 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  +  ( ( abs `  ( C  +  ( _i  x.  D ) ) ) ^ 2 ) )  /  M )  x.  ( ( ( ( abs `  ( E  +  ( _i  x.  F ) ) ) ^ 2 )  +  ( ( abs `  ( G  +  ( _i  x.  H ) ) ) ^ 2 ) )  /  M ) )  e.  S )
191131, 190eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ( R  x.  P
)  e.  S )
192 oveq1 6657 . . . . . . . . . 10  |-  ( i  =  R  ->  (
i  x.  P )  =  ( R  x.  P ) )
193192eleq1d 2686 . . . . . . . . 9  |-  ( i  =  R  ->  (
( i  x.  P
)  e.  S  <->  ( R  x.  P )  e.  S
) )
194193, 6elrab2 3366 . . . . . . . 8  |-  ( R  e.  T  <->  ( R  e.  NN  /\  ( R  x.  P )  e.  S ) )
19556, 191, 194sylanbrc 698 . . . . . . 7  |-  ( ph  ->  R  e.  T )
196 infssuzle 11771 . . . . . . 7  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  R  e.  T )  -> inf ( T ,  RR ,  <  )  <_  R )
19724, 195, 196sylancr 695 . . . . . 6  |-  ( ph  -> inf ( T ,  RR ,  <  )  <_  R
)
1987, 197syl5eqbr 4688 . . . . 5  |-  ( ph  ->  M  <_  R )
19956nnred 11035 . . . . . 6  |-  ( ph  ->  R  e.  RR )
200199, 31letri3d 10179 . . . . 5  |-  ( ph  ->  ( R  =  M  <-> 
( R  <_  M  /\  M  <_  R ) ) )
20120, 198, 200mpbir2and 957 . . . 4  |-  ( ph  ->  R  =  M )
202201olcd 408 . . 3  |-  ( ph  ->  ( R  =  0  \/  R  =  M ) )
203202, 53mpd 15 . 2  |-  ( ph  ->  ( M ^ 2 )  ||  ( M  x.  P ) )
204203, 47pm2.65i 185 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    mod cmo 12668   ^cexp 12860   Recre 13837   Imcim 13838   abscabs 13974    || cdvds 14983   Primecprime 15385   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  4sqlem18  15666
  Copyright terms: Public domain W3C validator