MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Visualization version   Unicode version

Theorem basellem5 24811
Description: Lemma for basel 24816. Using vieta1 24067, we can calculate the sum of the roots of  P as the quotient of the top two coefficients, and since the function  T enumerates the roots, we are left with an equation that sums the  cot ^ 2 function at the  M different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
basel.p  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
basel.t  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
Assertion
Ref Expression
basellem5  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
Distinct variable groups:    j, k,
t, n, M    j, N, k, n, t    P, k, n    T, k
Allowed substitution hints:    P( t, j)    T( t, j, n)

Proof of Theorem basellem5
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  (coeff `  P )  =  (coeff `  P )
2 eqid 2622 . . 3  |-  (deg `  P )  =  (deg
`  P )
3 eqid 2622 . . 3  |-  ( `' P " { 0 } )  =  ( `' P " { 0 } )
4 basel.n . . . . 5  |-  N  =  ( ( 2  x.  M )  +  1 )
5 basel.p . . . . 5  |-  P  =  ( t  e.  CC  |->  sum_ j  e.  ( 0 ... M ) ( ( ( N  _C  ( 2  x.  j
) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )
64, 5basellem2 24808 . . . 4  |-  ( M  e.  NN  ->  ( P  e.  (Poly `  CC )  /\  (deg `  P
)  =  M  /\  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) ) )
76simp1d 1073 . . 3  |-  ( M  e.  NN  ->  P  e.  (Poly `  CC )
)
86simp2d 1074 . . . 4  |-  ( M  e.  NN  ->  (deg `  P )  =  M )
9 nnnn0 11299 . . . . 5  |-  ( M  e.  NN  ->  M  e.  NN0 )
10 hashfz1 13134 . . . . 5  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
119, 10syl 17 . . . 4  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  M )
12 basel.t . . . . . . 7  |-  T  =  ( n  e.  ( 1 ... M ) 
|->  ( ( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 ) )
134, 5, 12basellem4 24810 . . . . . 6  |-  ( M  e.  NN  ->  T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
14 ovex 6678 . . . . . . 7  |-  ( 1 ... M )  e. 
_V
1514f1oen 7976 . . . . . 6  |-  ( T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } )  ->  ( 1 ... M )  ~~  ( `' P " { 0 } ) )
1613, 15syl 17 . . . . 5  |-  ( M  e.  NN  ->  (
1 ... M )  ~~  ( `' P " { 0 } ) )
17 fzfid 12772 . . . . . 6  |-  ( M  e.  NN  ->  (
1 ... M )  e. 
Fin )
18 nnne0 11053 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  =/=  0 )
198, 18eqnetrd 2861 . . . . . . . . 9  |-  ( M  e.  NN  ->  (deg `  P )  =/=  0
)
20 fveq2 6191 . . . . . . . . . . 11  |-  ( P  =  0p  -> 
(deg `  P )  =  (deg `  0p
) )
21 dgr0 24018 . . . . . . . . . . 11  |-  (deg ` 
0p )  =  0
2220, 21syl6eq 2672 . . . . . . . . . 10  |-  ( P  =  0p  -> 
(deg `  P )  =  0 )
2322necon3i 2826 . . . . . . . . 9  |-  ( (deg
`  P )  =/=  0  ->  P  =/=  0p )
2419, 23syl 17 . . . . . . . 8  |-  ( M  e.  NN  ->  P  =/=  0p )
253fta1 24063 . . . . . . . 8  |-  ( ( P  e.  (Poly `  CC )  /\  P  =/=  0p )  -> 
( ( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
267, 24, 25syl2anc 693 . . . . . . 7  |-  ( M  e.  NN  ->  (
( `' P " { 0 } )  e.  Fin  /\  ( # `
 ( `' P " { 0 } ) )  <_  (deg `  P
) ) )
2726simpld 475 . . . . . 6  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  e.  Fin )
28 hashen 13135 . . . . . 6  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( `' P " { 0 } )  e.  Fin )  ->  ( ( # `  ( 1 ... M
) )  =  (
# `  ( `' P " { 0 } ) )  <->  ( 1 ... M )  ~~  ( `' P " { 0 } ) ) )
2917, 27, 28syl2anc 693 . . . . 5  |-  ( M  e.  NN  ->  (
( # `  ( 1 ... M ) )  =  ( # `  ( `' P " { 0 } ) )  <->  ( 1 ... M )  ~~  ( `' P " { 0 } ) ) )
3016, 29mpbird 247 . . . 4  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... M ) )  =  ( # `  ( `' P " { 0 } ) ) )
318, 11, 303eqtr2rd 2663 . . 3  |-  ( M  e.  NN  ->  ( # `
 ( `' P " { 0 } ) )  =  (deg `  P ) )
32 id 22 . . . 4  |-  ( M  e.  NN  ->  M  e.  NN )
338, 32eqeltrd 2701 . . 3  |-  ( M  e.  NN  ->  (deg `  P )  e.  NN )
341, 2, 3, 7, 31, 33vieta1 24067 . 2  |-  ( M  e.  NN  ->  sum_ x  e.  ( `' P " { 0 } ) x  =  -u (
( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) ) )
35 id 22 . . 3  |-  ( x  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  ->  x  =  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )
36 oveq1 6657 . . . . . . . 8  |-  ( n  =  k  ->  (
n  x.  pi )  =  ( k  x.  pi ) )
3736oveq1d 6665 . . . . . . 7  |-  ( n  =  k  ->  (
( n  x.  pi )  /  N )  =  ( ( k  x.  pi )  /  N
) )
3837fveq2d 6195 . . . . . 6  |-  ( n  =  k  ->  ( tan `  ( ( n  x.  pi )  /  N ) )  =  ( tan `  (
( k  x.  pi )  /  N ) ) )
3938oveq1d 6665 . . . . 5  |-  ( n  =  k  ->  (
( tan `  (
( n  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
40 ovex 6678 . . . . 5  |-  ( ( tan `  ( ( k  x.  pi )  /  N ) ) ^ -u 2 )  e.  _V
4139, 12, 40fvmpt 6282 . . . 4  |-  ( k  e.  ( 1 ... M )  ->  ( T `  k )  =  ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
4241adantl 482 . . 3  |-  ( ( M  e.  NN  /\  k  e.  ( 1 ... M ) )  ->  ( T `  k )  =  ( ( tan `  (
( k  x.  pi )  /  N ) ) ^ -u 2 ) )
43 cnvimass 5485 . . . . 5  |-  ( `' P " { 0 } )  C_  dom  P
44 plyf 23954 . . . . . 6  |-  ( P  e.  (Poly `  CC )  ->  P : CC --> CC )
45 fdm 6051 . . . . . 6  |-  ( P : CC --> CC  ->  dom 
P  =  CC )
467, 44, 453syl 18 . . . . 5  |-  ( M  e.  NN  ->  dom  P  =  CC )
4743, 46syl5sseq 3653 . . . 4  |-  ( M  e.  NN  ->  ( `' P " { 0 } )  C_  CC )
4847sselda 3603 . . 3  |-  ( ( M  e.  NN  /\  x  e.  ( `' P " { 0 } ) )  ->  x  e.  CC )
4935, 17, 13, 42, 48fsumf1o 14454 . 2  |-  ( M  e.  NN  ->  sum_ x  e.  ( `' P " { 0 } ) x  =  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
) )
506simp3d 1075 . . . . . . 7  |-  ( M  e.  NN  ->  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) )
518oveq1d 6665 . . . . . . 7  |-  ( M  e.  NN  ->  (
(deg `  P )  -  1 )  =  ( M  -  1 ) )
5250, 51fveq12d 6197 . . . . . 6  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  ( M  -  1 ) ) )
53 nnm1nn0 11334 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
54 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  ( M  - 
1 )  ->  (
2  x.  n )  =  ( 2  x.  ( M  -  1 ) ) )
5554oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( M  - 
1 )  ->  ( N  _C  ( 2  x.  n ) )  =  ( N  _C  (
2  x.  ( M  -  1 ) ) ) )
56 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  ( M  - 
1 )  ->  ( M  -  n )  =  ( M  -  ( M  -  1
) ) )
5756oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( M  - 
1 )  ->  ( -u 1 ^ ( M  -  n ) )  =  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) )
5855, 57oveq12d 6668 . . . . . . . 8  |-  ( n  =  ( M  - 
1 )  ->  (
( N  _C  (
2  x.  n ) )  x.  ( -u
1 ^ ( M  -  n ) ) )  =  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) ) )
59 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) )
60 ovex 6678 . . . . . . . 8  |-  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) )  e.  _V
6158, 59, 60fvmpt 6282 . . . . . . 7  |-  ( ( M  -  1 )  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  ( M  -  1 ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1 ) ) ) ) )
6253, 61syl 17 . . . . . 6  |-  ( M  e.  NN  ->  (
( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  ( M  -  1 ) )  =  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( -u 1 ^ ( M  -  ( M  -  1
) ) ) ) )
63 nncn 11028 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  CC )
64 ax-1cn 9994 . . . . . . . . . . 11  |-  1  e.  CC
65 nncan 10310 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  -  ( M  -  1 ) )  =  1 )
6663, 64, 65sylancl 694 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( M  -  ( M  -  1 ) )  =  1 )
6766oveq2d 6666 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  ( M  - 
1 ) ) )  =  ( -u 1 ^ 1 ) )
68 neg1cn 11124 . . . . . . . . . 10  |-  -u 1  e.  CC
69 exp1 12866 . . . . . . . . . 10  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 1 )  =  -u 1
)
7068, 69ax-mp 5 . . . . . . . . 9  |-  ( -u
1 ^ 1 )  =  -u 1
7167, 70syl6eq 2672 . . . . . . . 8  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  ( M  - 
1 ) ) )  =  -u 1 )
7271oveq2d 6666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  ( -u
1 ^ ( M  -  ( M  - 
1 ) ) ) )  =  ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  -u 1 ) )
73 2nn 11185 . . . . . . . . . . . . . 14  |-  2  e.  NN
74 nnmulcl 11043 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
7573, 74mpan 706 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
7675peano2nnd 11037 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
774, 76syl5eqel 2705 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  N  e.  NN )
7877nnnn0d 11351 . . . . . . . . . 10  |-  ( M  e.  NN  ->  N  e.  NN0 )
79 2z 11409 . . . . . . . . . . 11  |-  2  e.  ZZ
80 nnz 11399 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  M  e.  ZZ )
81 peano2zm 11420 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
8280, 81syl 17 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  ZZ )
83 zmulcl 11426 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( 2  x.  ( M  -  1 ) )  e.  ZZ )
8479, 82, 83sylancr 695 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  ZZ )
85 bccl 13109 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 2  x.  ( M  -  1 ) )  e.  ZZ )  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  NN0 )
8678, 84, 85syl2anc 693 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e. 
NN0 )
8786nn0cnd 11353 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  CC )
88 mulcom 10022 . . . . . . . 8  |-  ( ( ( N  _C  (
2  x.  ( M  -  1 ) ) )  e.  CC  /\  -u 1  e.  CC )  ->  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  -u 1 )  =  ( -u 1  x.  ( N  _C  (
2  x.  ( M  -  1 ) ) ) ) )
8987, 68, 88sylancl 694 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  -u 1
)  =  ( -u
1  x.  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) ) )
9087mulm1d 10482 . . . . . . 7  |-  ( M  e.  NN  ->  ( -u 1  x.  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
9172, 89, 903eqtrd 2660 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  ( -u
1 ^ ( M  -  ( M  - 
1 ) ) ) )  =  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
9252, 62, 913eqtrd 2660 . . . . 5  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
9387negcld 10379 . . . . 5  |-  ( M  e.  NN  ->  -u ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  CC )
9492, 93eqeltrd 2701 . . . 4  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  e.  CC )
9550, 8fveq12d 6197 . . . . . 6  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  =  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  M ) )
96 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  M  ->  (
2  x.  n )  =  ( 2  x.  M ) )
9796oveq2d 6666 . . . . . . . . 9  |-  ( n  =  M  ->  ( N  _C  ( 2  x.  n ) )  =  ( N  _C  (
2  x.  M ) ) )
98 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  M  ->  ( M  -  n )  =  ( M  -  M ) )
9998oveq2d 6666 . . . . . . . . 9  |-  ( n  =  M  ->  ( -u 1 ^ ( M  -  n ) )  =  ( -u 1 ^ ( M  -  M ) ) )
10097, 99oveq12d 6668 . . . . . . . 8  |-  ( n  =  M  ->  (
( N  _C  (
2  x.  n ) )  x.  ( -u
1 ^ ( M  -  n ) ) )  =  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M ) ) ) )
101 ovex 6678 . . . . . . . 8  |-  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M ) ) )  e.  _V
102100, 59, 101fvmpt 6282 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  M )  =  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M
) ) ) )
1039, 102syl 17 . . . . . 6  |-  ( M  e.  NN  ->  (
( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n
) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) `  M
)  =  ( ( N  _C  ( 2  x.  M ) )  x.  ( -u 1 ^ ( M  -  M ) ) ) )
10463subidd 10380 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( M  -  M )  =  0 )
105104oveq2d 6666 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  M ) )  =  ( -u 1 ^ 0 ) )
106 exp0 12864 . . . . . . . . . 10  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
10768, 106ax-mp 5 . . . . . . . . 9  |-  ( -u
1 ^ 0 )  =  1
108105, 107syl6eq 2672 . . . . . . . 8  |-  ( M  e.  NN  ->  ( -u 1 ^ ( M  -  M ) )  =  1 )
109108oveq2d 6666 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  x.  ( -u
1 ^ ( M  -  M ) ) )  =  ( ( N  _C  ( 2  x.  M ) )  x.  1 ) )
110 1eluzge0 11732 . . . . . . . . . . . 12  |-  1  e.  ( ZZ>= `  0 )
111 fzss1 12380 . . . . . . . . . . . 12  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
112110, 111ax-mp 5 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  ( 0 ... N
)
11375nnred 11035 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  RR )
114113lep1d 10955 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
2  x.  M )  <_  ( ( 2  x.  M )  +  1 ) )
115114, 4syl6breqr 4695 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
2  x.  M )  <_  N )
116 nnuz 11723 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
11775, 116syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  ( ZZ>= `  1
) )
11877nnzd 11481 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  N  e.  ZZ )
119 elfz5 12334 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  M
)  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( 2  x.  M
)  e.  ( 1 ... N )  <->  ( 2  x.  M )  <_  N ) )
120117, 118, 119syl2anc 693 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  e.  ( 1 ... N )  <->  ( 2  x.  M )  <_  N ) )
121115, 120mpbird 247 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  ( 1 ... N ) )
122112, 121sseldi 3601 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  ( 0 ... N ) )
123 bccl2 13110 . . . . . . . . . 10  |-  ( ( 2  x.  M )  e.  ( 0 ... N )  ->  ( N  _C  ( 2  x.  M ) )  e.  NN )
124122, 123syl 17 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  e.  NN )
125124nncnd 11036 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  e.  CC )
126125mulid1d 10057 . . . . . . 7  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  x.  1 )  =  ( N  _C  ( 2  x.  M
) ) )
127109, 126eqtrd 2656 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  x.  ( -u
1 ^ ( M  -  M ) ) )  =  ( N  _C  ( 2  x.  M ) ) )
12895, 103, 1273eqtrd 2660 . . . . 5  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  =  ( N  _C  ( 2  x.  M ) ) )
129128, 125eqeltrd 2701 . . . 4  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  e.  CC )
130124nnne0d 11065 . . . . 5  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =/=  0 )
131128, 130eqnetrd 2861 . . . 4  |-  ( M  e.  NN  ->  (
(coeff `  P ) `  (deg `  P )
)  =/=  0 )
13294, 129, 131divnegd 10814 . . 3  |-  ( M  e.  NN  ->  -u (
( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) )  =  (
-u ( (coeff `  P ) `  (
(deg `  P )  -  1 ) )  /  ( (coeff `  P ) `  (deg `  P ) ) ) )
13392negeqd 10275 . . . . 5  |-  ( M  e.  NN  ->  -u (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  -u -u ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
13487negnegd 10383 . . . . 5  |-  ( M  e.  NN  ->  -u -u ( N  _C  ( 2  x.  ( M  -  1 ) ) )  =  ( N  _C  (
2  x.  ( M  -  1 ) ) ) )
135133, 134eqtrd 2656 . . . 4  |-  ( M  e.  NN  ->  -u (
(coeff `  P ) `  ( (deg `  P
)  -  1 ) )  =  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )
136135, 128oveq12d 6668 . . 3  |-  ( M  e.  NN  ->  ( -u ( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) )  =  ( ( N  _C  (
2  x.  ( M  -  1 ) ) )  /  ( N  _C  ( 2  x.  M ) ) ) )
137 bcm1k 13102 . . . . . . . . . 10  |-  ( ( 2  x.  M )  e.  ( 1 ... N )  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( ( 2  x.  M )  -  1 ) )  x.  (
( N  -  (
( 2  x.  M
)  -  1 ) )  /  ( 2  x.  M ) ) ) )
138121, 137syl 17 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( ( 2  x.  M )  -  1 ) )  x.  (
( N  -  (
( 2  x.  M
)  -  1 ) )  /  ( 2  x.  M ) ) ) )
13975nncnd 11036 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  CC )
140 1cnd 10056 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  1  e.  CC )
141139, 140, 140pnncand 10431 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  +  1 )  -  ( ( 2  x.  M )  -  1 ) )  =  ( 1  +  1 ) )
1424oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( N  -  ( ( 2  x.  M )  - 
1 ) )  =  ( ( ( 2  x.  M )  +  1 )  -  (
( 2  x.  M
)  -  1 ) )
143 df-2 11079 . . . . . . . . . . . . . . . 16  |-  2  =  ( 1  +  1 )
144141, 142, 1433eqtr4g 2681 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  ( N  -  ( (
2  x.  M )  -  1 ) )  =  2 )
145 2nn0 11309 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
146144, 145syl6eqel 2709 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  ( N  -  ( (
2  x.  M )  -  1 ) )  e.  NN0 )
147 nnm1nn0 11334 . . . . . . . . . . . . . . . 16  |-  ( ( 2  x.  M )  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  NN0 )
14875, 147syl 17 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  NN0 )
149 nn0sub 11343 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2  x.  M )  -  1 )  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( 2  x.  M )  - 
1 )  <_  N  <->  ( N  -  ( ( 2  x.  M )  -  1 ) )  e.  NN0 ) )
150148, 78, 149syl2anc 693 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  <_  N  <->  ( N  -  ( ( 2  x.  M )  - 
1 ) )  e. 
NN0 ) )
151146, 150mpbird 247 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  <_  N )
152632timesd 11275 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN  ->  (
2  x.  M )  =  ( M  +  M ) )
153152oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  =  ( ( M  +  M )  - 
1 ) )
15463, 63, 140addsubd 10413 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN  ->  (
( M  +  M
)  -  1 )  =  ( ( M  -  1 )  +  M ) )
155153, 154eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  =  ( ( M  -  1 )  +  M ) )
156 nn0nnaddcl 11324 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  -  1 )  e.  NN0  /\  M  e.  NN )  ->  ( ( M  - 
1 )  +  M
)  e.  NN )
15753, 156mpancom 703 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  (
( M  -  1 )  +  M )  e.  NN )
158155, 157eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  NN )
159158, 116syl6eleq 2711 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  ( ZZ>= `  1
) )
160 elfz5 12334 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  M )  -  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( ( 2  x.  M )  -  1 )  e.  ( 1 ... N )  <->  ( (
2  x.  M )  -  1 )  <_  N ) )
161159, 118, 160syl2anc 693 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  e.  ( 1 ... N )  <->  ( (
2  x.  M )  -  1 )  <_  N ) )
162151, 161mpbird 247 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  ( 1 ... N ) )
163 bcm1k 13102 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  M
)  -  1 )  e.  ( 1 ... N )  ->  ( N  _C  ( ( 2  x.  M )  - 
1 ) )  =  ( ( N  _C  ( ( ( 2  x.  M )  - 
1 )  -  1 ) )  x.  (
( N  -  (
( ( 2  x.  M )  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  -  1 ) ) ) )
164162, 163syl 17 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( N  _C  ( ( 2  x.  M )  - 
1 ) )  =  ( ( N  _C  ( ( ( 2  x.  M )  - 
1 )  -  1 ) )  x.  (
( N  -  (
( ( 2  x.  M )  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  -  1 ) ) ) )
165642timesi 11147 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  ( 1  +  1 )
166165eqcomi 2631 . . . . . . . . . . . . . . 15  |-  ( 1  +  1 )  =  ( 2  x.  1 )
167166oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  M )  -  ( 1  +  1 ) )  =  ( ( 2  x.  M )  -  (
2  x.  1 ) )
168139, 140, 140subsub4d 10423 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  =  ( ( 2  x.  M )  -  ( 1  +  1 ) ) )
169 2cnd 11093 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  2  e.  CC )
170169, 63, 140subdid 10486 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  =  ( ( 2  x.  M )  -  ( 2  x.  1 ) ) )
171167, 168, 1703eqtr4a 2682 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  =  ( 2  x.  ( M  -  1 ) ) )
172171oveq2d 6666 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( N  _C  ( ( ( 2  x.  M )  -  1 )  - 
1 ) )  =  ( N  _C  (
2  x.  ( M  -  1 ) ) ) )
17377nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  N  e.  CC )
174158nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  CC )
175173, 174, 140subsubd 10420 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  ( N  -  ( (
( 2  x.  M
)  -  1 )  -  1 ) )  =  ( ( N  -  ( ( 2  x.  M )  - 
1 ) )  +  1 ) )
176144oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  (
( N  -  (
( 2  x.  M
)  -  1 ) )  +  1 )  =  ( 2  +  1 ) )
177 df-3 11080 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
178176, 177syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  ->  (
( N  -  (
( 2  x.  M
)  -  1 ) )  +  1 )  =  3 )
179175, 178eqtrd 2656 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  ( N  -  ( (
( 2  x.  M
)  -  1 )  -  1 ) )  =  3 )
180179oveq1d 6665 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
( N  -  (
( ( 2  x.  M )  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  -  1 ) )  =  ( 3  / 
( ( 2  x.  M )  -  1 ) ) )
181172, 180oveq12d 6668 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( N  _C  (
( ( 2  x.  M )  -  1 )  -  1 ) )  x.  ( ( N  -  ( ( ( 2  x.  M
)  -  1 )  -  1 ) )  /  ( ( 2  x.  M )  - 
1 ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( 3  /  (
( 2  x.  M
)  -  1 ) ) ) )
182164, 181eqtrd 2656 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( N  _C  ( ( 2  x.  M )  - 
1 ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
3  /  ( ( 2  x.  M )  -  1 ) ) ) )
183144oveq1d 6665 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( N  -  (
( 2  x.  M
)  -  1 ) )  /  ( 2  x.  M ) )  =  ( 2  / 
( 2  x.  M
) ) )
184182, 183oveq12d 6668 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( N  _C  (
( 2  x.  M
)  -  1 ) )  x.  ( ( N  -  ( ( 2  x.  M )  -  1 ) )  /  ( 2  x.  M ) ) )  =  ( ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( 3  / 
( ( 2  x.  M )  -  1 ) ) )  x.  ( 2  /  (
2  x.  M ) ) ) )
185 3re 11094 . . . . . . . . . . . 12  |-  3  e.  RR
186 nndivre 11056 . . . . . . . . . . . 12  |-  ( ( 3  e.  RR  /\  ( ( 2  x.  M )  -  1 )  e.  NN )  ->  ( 3  / 
( ( 2  x.  M )  -  1 ) )  e.  RR )
187185, 158, 186sylancr 695 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
3  /  ( ( 2  x.  M )  -  1 ) )  e.  RR )
188187recnd 10068 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
3  /  ( ( 2  x.  M )  -  1 ) )  e.  CC )
189 2re 11090 . . . . . . . . . . . 12  |-  2  e.  RR
190 nndivre 11056 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( 2  x.  M
)  e.  NN )  ->  ( 2  / 
( 2  x.  M
) )  e.  RR )
191189, 75, 190sylancr 695 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  /  ( 2  x.  M ) )  e.  RR )
192191recnd 10068 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  /  ( 2  x.  M ) )  e.  CC )
19387, 188, 192mulassd 10063 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
3  /  ( ( 2  x.  M )  -  1 ) ) )  x.  ( 2  /  ( 2  x.  M ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( ( 3  / 
( ( 2  x.  M )  -  1 ) )  x.  (
2  /  ( 2  x.  M ) ) ) ) )
194138, 184, 1933eqtrd 2660 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
( 3  /  (
( 2  x.  M
)  -  1 ) )  x.  ( 2  /  ( 2  x.  M ) ) ) ) )
195 3cn 11095 . . . . . . . . . . . 12  |-  3  e.  CC
196195a1i 11 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  3  e.  CC )
197158nnne0d 11065 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  =/=  0 )
19875nnne0d 11065 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  M )  =/=  0 )
199196, 174, 169, 139, 197, 198divmuldivd 10842 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 3  /  (
( 2  x.  M
)  -  1 ) )  x.  ( 2  /  ( 2  x.  M ) ) )  =  ( ( 3  x.  2 )  / 
( ( ( 2  x.  M )  - 
1 )  x.  (
2  x.  M ) ) ) )
200 3t2e6 11179 . . . . . . . . . . . 12  |-  ( 3  x.  2 )  =  6
201200a1i 11 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
3  x.  2 )  =  6 )
202174, 139mulcomd 10061 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  x.  ( 2  x.  M ) )  =  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) ) )
203201, 202oveq12d 6668 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 3  x.  2 )  /  ( ( ( 2  x.  M
)  -  1 )  x.  ( 2  x.  M ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
204199, 203eqtrd 2656 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( 3  /  (
( 2  x.  M
)  -  1 ) )  x.  ( 2  /  ( 2  x.  M ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
205204oveq2d 6666 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  x.  ( ( 3  /  ( ( 2  x.  M )  -  1 ) )  x.  ( 2  / 
( 2  x.  M
) ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  ( 6  /  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) ) ) )
206194, 205eqtrd 2656 . . . . . . 7  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  M ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) ) ) )
207206oveq1d 6665 . . . . . 6  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  ( ( ( N  _C  ( 2  x.  ( M  - 
1 ) ) )  x.  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )  / 
( N  _C  (
2  x.  ( M  -  1 ) ) ) ) )
208 6re 11101 . . . . . . . . 9  |-  6  e.  RR
20975, 158nnmulcld 11068 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  e.  NN )
210 nndivre 11056 . . . . . . . . 9  |-  ( ( 6  e.  RR  /\  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  e.  NN )  ->  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) )  e.  RR )
211208, 209, 210sylancr 695 . . . . . . . 8  |-  ( M  e.  NN  ->  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) )  e.  RR )
212211recnd 10068 . . . . . . 7  |-  ( M  e.  NN  ->  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) )  e.  CC )
213 nnm1nn0 11334 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  M
)  -  1 )  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  e.  NN0 )
214158, 213syl 17 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  e.  NN0 )
215171, 214eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  NN0 )
216215nn0red 11352 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  RR )
217158nnred 11035 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  -  1 )  e.  RR )
21877nnred 11035 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  N  e.  RR )
219217ltm1d 10956 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  (
( ( 2  x.  M )  -  1 )  -  1 )  <  ( ( 2  x.  M )  - 
1 ) )
220171, 219eqbrtrrd 4677 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  <  ( ( 2  x.  M )  - 
1 ) )
221216, 217, 220ltled 10185 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  <_  ( ( 2  x.  M )  - 
1 ) )
222216, 217, 218, 221, 151letrd 10194 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  <_  N )
223 nn0uz 11722 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
224215, 223syl6eleq 2711 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  ( ZZ>= `  0
) )
225 elfz5 12334 . . . . . . . . . . 11  |-  ( ( ( 2  x.  ( M  -  1 ) )  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
( 2  x.  ( M  -  1 ) )  e.  ( 0 ... N )  <->  ( 2  x.  ( M  - 
1 ) )  <_  N ) )
226224, 118, 225syl2anc 693 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( 2  x.  ( M  -  1 ) )  e.  ( 0 ... N )  <->  ( 2  x.  ( M  - 
1 ) )  <_  N ) )
227222, 226mpbird 247 . . . . . . . . 9  |-  ( M  e.  NN  ->  (
2  x.  ( M  -  1 ) )  e.  ( 0 ... N ) )
228 bccl2 13110 . . . . . . . . 9  |-  ( ( 2  x.  ( M  -  1 ) )  e.  ( 0 ... N )  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  NN )
229227, 228syl 17 . . . . . . . 8  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  e.  NN )
230229nnne0d 11065 . . . . . . 7  |-  ( M  e.  NN  ->  ( N  _C  ( 2  x.  ( M  -  1 ) ) )  =/=  0 )
231212, 87, 230divcan3d 10806 . . . . . 6  |-  ( M  e.  NN  ->  (
( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  x.  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
232207, 231eqtrd 2656 . . . . 5  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) )  =  ( 6  / 
( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) ) ) )
233232oveq2d 6666 . . . 4  |-  ( M  e.  NN  ->  (
1  /  ( ( N  _C  ( 2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) ) )  =  ( 1  / 
( 6  /  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) ) ) )
234125, 87, 130, 230recdivd 10818 . . . 4  |-  ( M  e.  NN  ->  (
1  /  ( ( N  _C  ( 2  x.  M ) )  /  ( N  _C  ( 2  x.  ( M  -  1 ) ) ) ) )  =  ( ( N  _C  ( 2  x.  ( M  -  1 ) ) )  / 
( N  _C  (
2  x.  M ) ) ) )
235209nncnd 11036 . . . . 5  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  e.  CC )
236209nnne0d 11065 . . . . 5  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  =/=  0 )
237 6cn 11102 . . . . . 6  |-  6  e.  CC
238 6nn 11189 . . . . . . 7  |-  6  e.  NN
239238nnne0i 11055 . . . . . 6  |-  6  =/=  0
240 recdiv 10731 . . . . . 6  |-  ( ( ( 6  e.  CC  /\  6  =/=  0 )  /\  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  e.  CC  /\  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  =/=  0 ) )  -> 
( 1  /  (
6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) ) ) )  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
241237, 239, 240mpanl12 718 . . . . 5  |-  ( ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  e.  CC  /\  ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  =/=  0 )  ->  ( 1  / 
( 6  /  (
( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) ) ) )  =  ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  6 ) )
242235, 236, 241syl2anc 693 . . . 4  |-  ( M  e.  NN  ->  (
1  /  ( 6  /  ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1 ) ) ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )
243233, 234, 2423eqtr3d 2664 . . 3  |-  ( M  e.  NN  ->  (
( N  _C  (
2  x.  ( M  -  1 ) ) )  /  ( N  _C  ( 2  x.  M ) ) )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  - 
1 ) )  / 
6 ) )
244132, 136, 2433eqtrd 2660 . 2  |-  ( M  e.  NN  ->  -u (
( (coeff `  P
) `  ( (deg `  P )  -  1 ) )  /  (
(coeff `  P ) `  (deg `  P )
) )  =  ( ( ( 2  x.  M )  x.  (
( 2  x.  M
)  -  1 ) )  /  6 ) )
24534, 49, 2443eqtr3d 2664 1  |-  ( M  e.  NN  ->  sum_ k  e.  ( 1 ... M
) ( ( tan `  ( ( k  x.  pi )  /  N
) ) ^ -u 2
)  =  ( ( ( 2  x.  M
)  x.  ( ( 2  x.  M )  -  1 ) )  /  6 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   6c6 11074   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860    _C cbc 13089   #chash 13117   sum_csu 14416   tanctan 14796   picpi 14797   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046
This theorem is referenced by:  basellem8  24814
  Copyright terms: Public domain W3C validator