![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnmulcld | Structured version Visualization version Unicode version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nnmulcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnmulcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnmulcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | nnmulcl 11043 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 693 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 |
This theorem is referenced by: bcm1k 13102 bcp1n 13103 permnn 13113 trireciplem 14594 efaddlem 14823 eftlub 14839 eirrlem 14932 modmulconst 15013 isprm5 15419 crth 15483 phimullem 15484 pcqmul 15558 pcaddlem 15592 pcbc 15604 oddprmdvds 15607 pockthlem 15609 pockthg 15610 vdwlem3 15687 vdwlem6 15690 vdwlem9 15693 torsubg 18257 ablfacrp 18465 dgrcolem1 24029 aalioulem5 24091 aaliou3lem2 24098 log2cnv 24671 log2tlbnd 24672 log2ublem2 24674 log2ub 24676 lgamgulmlem4 24758 wilthlem2 24795 ftalem7 24805 basellem5 24811 mumul 24907 fsumfldivdiaglem 24915 dvdsmulf1o 24920 sgmmul 24926 chtublem 24936 bcmono 25002 bposlem3 25011 bposlem5 25013 gausslemma2dlem1a 25090 lgsquadlem2 25106 lgsquadlem3 25107 lgsquad2lem2 25110 2sqlem6 25148 rplogsumlem1 25173 rplogsumlem2 25174 dchrisum0fmul 25195 vmalogdivsum2 25227 pntrsumbnd2 25256 pntpbnd1 25275 pntpbnd2 25276 ostth2lem2 25323 2sqmod 29648 oddpwdc 30416 eulerpartlemgh 30440 subfaclim 31170 bcprod 31624 faclim2 31634 jm2.27c 37574 relexpmulnn 38001 mccllem 39829 limsup10exlem 40004 wallispilem5 40286 wallispi2lem1 40288 wallispi2 40290 stirlinglem3 40293 stirlinglem8 40298 stirlinglem15 40305 dirkertrigeqlem3 40317 hoicvrrex 40770 deccarry 41321 fmtnoprmfac2 41479 sfprmdvdsmersenne 41520 lighneallem3 41524 proththdlem 41530 blennnt2 42383 |
Copyright terms: Public domain | W3C validator |