Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof2 Structured version   Visualization version   Unicode version

Theorem broutsideof2 32229
Description: Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )

Proof of Theorem broutsideof2
StepHypRef Expression
1 broutsideof 32228 . 2  |-  ( POutsideOf <. A ,  B >.  <->  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )
2 btwntriv1 32123 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  A  Btwn  <. A ,  B >. )
323adant3r1 1274 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  Btwn  <. A ,  B >. )
4 breq1 4656 . . . . . . . 8  |-  ( A  =  P  ->  ( A  Btwn  <. A ,  B >.  <-> 
P  Btwn  <. A ,  B >. ) )
53, 4syl5ibcom 235 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  =  P  ->  P  Btwn  <. A ,  B >. ) )
65necon3bd 2808 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( -.  P  Btwn  <. A ,  B >.  ->  A  =/=  P ) )
76imp 445 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  -.  P  Btwn  <. A ,  B >. )  ->  A  =/=  P )
87adantrl 752 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  A  =/=  P )
9 btwntriv2 32119 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  B  Btwn  <. A ,  B >. )
1093adant3r1 1274 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  Btwn  <. A ,  B >. )
11 breq1 4656 . . . . . . . 8  |-  ( B  =  P  ->  ( B  Btwn  <. A ,  B >.  <-> 
P  Btwn  <. A ,  B >. ) )
1210, 11syl5ibcom 235 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  =  P  ->  P  Btwn  <. A ,  B >. ) )
1312necon3bd 2808 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( -.  P  Btwn  <. A ,  B >.  ->  B  =/=  P ) )
1413imp 445 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  -.  P  Btwn  <. A ,  B >. )  ->  B  =/=  P )
1514adantrl 752 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  B  =/=  P )
16 brcolinear 32166 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Colinear  <. A ,  B >. 
<->  ( P  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  P >.  \/  B  Btwn  <. P ,  A >. ) ) )
17 pm2.24 121 . . . . . . . 8  |-  ( P 
Btwn  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
1817a1i 11 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
19 3anrot 1043 . . . . . . . . . 10  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )
20 btwncom 32121 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >. 
<->  A  Btwn  <. P ,  B >. ) )
2119, 20sylan2b 492 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >. 
<->  A  Btwn  <. P ,  B >. ) )
22 orc 400 . . . . . . . . 9  |-  ( A 
Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
2321, 22syl6bi 243 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
2423a1dd 50 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  P >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
25 olc 399 . . . . . . . . 9  |-  ( B 
Btwn  <. P ,  A >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
2625a1d 25 . . . . . . . 8  |-  ( B 
Btwn  <. P ,  A >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
2726a1i 11 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2818, 24, 273jaod 1392 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( P  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  P >.  \/  B  Btwn  <. P ,  A >. )  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2916, 28sylbid 230 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( P  Colinear  <. A ,  B >.  ->  ( -.  P  Btwn  <. A ,  B >.  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
3029imp32 449 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
318, 15, 303jca 1242 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )  ->  ( A  =/=  P  /\  B  =/= 
P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
32 simp3 1063 . . . . . 6  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  -> 
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
33 3ancomb 1047 . . . . . . . 8  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( P  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
34 btwncolinear2 32177 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  P  Colinear  <. A ,  B >. ) )
3533, 34sylan2b 492 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  P  Colinear  <. A ,  B >. ) )
36 btwncolinear1 32176 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  P  Colinear  <. A ,  B >. ) )
3735, 36jaod 395 . . . . . 6  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  P  Colinear  <. A ,  B >. ) )
3832, 37syl5 34 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  ->  P  Colinear  <. A ,  B >. ) )
3938imp 445 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  P  Colinear  <. A ,  B >. )
40 simpr2 1068 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  A  =/=  P )
4140neneqd 2799 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  A  =  P )
42 simprl1 1106 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  A  Btwn  <. P ,  B >. )
43 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. A ,  B >. )
44 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
45 simpr2 1068 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
46 simpr1 1067 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
47 simpr3 1069 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
48 btwnswapid 32124 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
4944, 45, 46, 47, 48syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
5049adantr 481 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  ( ( A  Btwn  <. P ,  B >.  /\  P  Btwn  <. A ,  B >. )  ->  A  =  P ) )
5142, 43, 50mp2and 715 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  A  =  P )
5251expr 643 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  ( P  Btwn  <. A ,  B >.  ->  A  =  P ) )
5341, 52mtod 189 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. P ,  B >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  P  Btwn  <. A ,  B >. )
54533exp2 1285 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. P ,  B >.  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
55 simpr3 1069 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  B  =/=  P )
5655neneqd 2799 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  B  =  P )
57 simprl1 1106 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  B  Btwn  <. P ,  A >. )
58 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. A ,  B >. )
5944, 46, 45, 47, 58btwncomand 32122 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  P  Btwn  <. B ,  A >. )
60 3anrot 1043 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ( EE
`  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  <->  ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
61 btwnswapid 32124 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6260, 61sylan2br 493 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6362adantr 481 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  ( ( B  Btwn  <. P ,  A >.  /\  P  Btwn  <. B ,  A >. )  ->  B  =  P ) )
6457, 59, 63mp2and 715 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
)  /\  P  Btwn  <. A ,  B >. ) )  ->  B  =  P )
6564expr 643 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  ( P  Btwn  <. A ,  B >.  ->  B  =  P ) )
6656, 65mtod 189 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. P ,  A >.  /\  A  =/=  P  /\  B  =/=  P
) )  ->  -.  P  Btwn  <. A ,  B >. )
67663exp2 1285 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. P ,  A >.  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
6854, 67jaod 395 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
6968com12 32 . . . . . 6  |-  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  ->  ( A  =/=  P  ->  ( B  =/=  P  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
7069com4l 92 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  =/=  P  ->  ( B  =/=  P  ->  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  -.  P  Btwn  <. A ,  B >. ) ) ) )
71703imp2 1282 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  -.  P  Btwn  <. A ,  B >. )
7239, 71jca 554 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )  ->  ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. ) )
7331, 72impbida 877 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( P  Colinear  <. A ,  B >.  /\  -.  P  Btwn  <. A ,  B >. )  <->  ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
741, 73syl5bb 272 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769    Colinear ccolin 32144  OutsideOfcoutsideof 32226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-colinear 32146  df-outsideof 32227
This theorem is referenced by:  outsidene1  32230  outsidene2  32231  btwnoutside  32232  broutsideof3  32233  outsideofcom  32235  outsideoftr  32236  outsideofeq  32237  outsideofeu  32238  lineunray  32254
  Copyright terms: Public domain W3C validator