| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caushft | Structured version Visualization version Unicode version | ||
| Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| Ref | Expression |
|---|---|
| caures.1 |
|
| caures.3 |
|
| caures.4 |
|
| caushft.4 |
|
| caushft.5 |
|
| caushft.7 |
|
| caushft.8 |
|
| caushft.9 |
|
| Ref | Expression |
|---|---|
| caushft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caushft.8 |
. . . . 5
| |
| 2 | caures.1 |
. . . . . 6
| |
| 3 | caures.4 |
. . . . . . 7
| |
| 4 | metxmet 22139 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 17 |
. . . . . 6
|
| 6 | caures.3 |
. . . . . 6
| |
| 7 | caushft.7 |
. . . . . 6
| |
| 8 | 7 | ralrimiva 2966 |
. . . . . . 7
|
| 9 | fveq2 6191 |
. . . . . . . . 9
| |
| 10 | oveq1 6657 |
. . . . . . . . . 10
| |
| 11 | 10 | fveq2d 6195 |
. . . . . . . . 9
|
| 12 | 9, 11 | eqeq12d 2637 |
. . . . . . . 8
|
| 13 | 12 | rspccva 3308 |
. . . . . . 7
|
| 14 | 8, 13 | sylan 488 |
. . . . . 6
|
| 15 | 2, 5, 6, 7, 14 | iscau4 23077 |
. . . . 5
|
| 16 | 1, 15 | mpbid 222 |
. . . 4
|
| 17 | 16 | simprd 479 |
. . 3
|
| 18 | 2 | eleq2i 2693 |
. . . . . . . . 9
|
| 19 | 18 | biimpi 206 |
. . . . . . . 8
|
| 20 | caushft.5 |
. . . . . . . 8
| |
| 21 | eluzadd 11716 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | syl2anr 495 |
. . . . . . 7
|
| 23 | caushft.4 |
. . . . . . 7
| |
| 24 | 22, 23 | syl6eleqr 2712 |
. . . . . 6
|
| 25 | simplr 792 |
. . . . . . . . . . . 12
| |
| 26 | 25, 2 | syl6eleq 2711 |
. . . . . . . . . . 11
|
| 27 | eluzelz 11697 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . 10
|
| 29 | 20 | ad2antrr 762 |
. . . . . . . . . 10
|
| 30 | simpr 477 |
. . . . . . . . . 10
| |
| 31 | eluzsub 11717 |
. . . . . . . . . 10
| |
| 32 | 28, 29, 30, 31 | syl3anc 1326 |
. . . . . . . . 9
|
| 33 | simp3 1063 |
. . . . . . . . . 10
| |
| 34 | 33 | ralimi 2952 |
. . . . . . . . 9
|
| 35 | oveq1 6657 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 37 | 36 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 38 | 37 | breq1d 4663 |
. . . . . . . . . 10
|
| 39 | 38 | rspcv 3305 |
. . . . . . . . 9
|
| 40 | 32, 34, 39 | syl2im 40 |
. . . . . . . 8
|
| 41 | eluzelz 11697 |
. . . . . . . . . . . . . . 15
| |
| 42 | 41 | adantl 482 |
. . . . . . . . . . . . . 14
|
| 43 | 42 | zcnd 11483 |
. . . . . . . . . . . . 13
|
| 44 | 20 | zcnd 11483 |
. . . . . . . . . . . . . 14
|
| 45 | 44 | ad2antrr 762 |
. . . . . . . . . . . . 13
|
| 46 | 43, 45 | npcand 10396 |
. . . . . . . . . . . 12
|
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 48 | 47 | oveq1d 6665 |
. . . . . . . . . 10
|
| 49 | 3 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 50 | caushft.9 |
. . . . . . . . . . . . 13
| |
| 51 | 50 | ad2antrr 762 |
. . . . . . . . . . . 12
|
| 52 | 23 | uztrn2 11705 |
. . . . . . . . . . . . 13
|
| 53 | 24, 52 | sylan 488 |
. . . . . . . . . . . 12
|
| 54 | 51, 53 | ffvelrnd 6360 |
. . . . . . . . . . 11
|
| 55 | 50 | adantr 481 |
. . . . . . . . . . . . 13
|
| 56 | 55, 24 | ffvelrnd 6360 |
. . . . . . . . . . . 12
|
| 57 | 56 | adantr 481 |
. . . . . . . . . . 11
|
| 58 | metsym 22155 |
. . . . . . . . . . 11
| |
| 59 | 49, 54, 57, 58 | syl3anc 1326 |
. . . . . . . . . 10
|
| 60 | 48, 59 | eqtrd 2656 |
. . . . . . . . 9
|
| 61 | 60 | breq1d 4663 |
. . . . . . . 8
|
| 62 | 40, 61 | sylibd 229 |
. . . . . . 7
|
| 63 | 62 | ralrimdva 2969 |
. . . . . 6
|
| 64 | fveq2 6191 |
. . . . . . . 8
| |
| 65 | fveq2 6191 |
. . . . . . . . . 10
| |
| 66 | 65 | oveq1d 6665 |
. . . . . . . . 9
|
| 67 | 66 | breq1d 4663 |
. . . . . . . 8
|
| 68 | 64, 67 | raleqbidv 3152 |
. . . . . . 7
|
| 69 | 68 | rspcev 3309 |
. . . . . 6
|
| 70 | 24, 63, 69 | syl6an 568 |
. . . . 5
|
| 71 | 70 | rexlimdva 3031 |
. . . 4
|
| 72 | 71 | ralimdv 2963 |
. . 3
|
| 73 | 17, 72 | mpd 15 |
. 2
|
| 74 | 6, 20 | zaddcld 11486 |
. . 3
|
| 75 | eqidd 2623 |
. . 3
| |
| 76 | eqidd 2623 |
. . 3
| |
| 77 | 23, 5, 74, 75, 76, 50 | iscauf 23078 |
. 2
|
| 78 | 73, 77 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-xneg 11946 df-xadd 11947 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-cau 23054 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |