MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Structured version   Visualization version   Unicode version

Theorem chordthmlem3 24561
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2  + PM 2 . This follows from chordthmlem2 24560 and the Pythagorean theorem (pythag 24547) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A  |-  ( ph  ->  A  e.  CC )
chordthmlem3.B  |-  ( ph  ->  B  e.  CC )
chordthmlem3.Q  |-  ( ph  ->  Q  e.  CC )
chordthmlem3.X  |-  ( ph  ->  X  e.  RR )
chordthmlem3.M  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
chordthmlem3.P  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
chordthmlem3.ABequidistQ  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
Assertion
Ref Expression
chordthmlem3  |-  ( ph  ->  ( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )

Proof of Theorem chordthmlem3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9  |-  ( ph  ->  Q  e.  CC )
2 chordthmlem3.M . . . . . . . . . 10  |-  ( ph  ->  M  =  ( ( A  +  B )  /  2 ) )
3 chordthmlem3.A . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
4 chordthmlem3.B . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
53, 4addcld 10059 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  CC )
65halfcld 11277 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  CC )
72, 6eqeltrd 2701 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
81, 7subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( Q  -  M
)  e.  CC )
98abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  ( Q  -  M )
)  e.  RR )
109recnd 10068 . . . . . 6  |-  ( ph  ->  ( abs `  ( Q  -  M )
)  e.  CC )
1110sqcld 13006 . . . . 5  |-  ( ph  ->  ( ( abs `  ( Q  -  M )
) ^ 2 )  e.  CC )
1211adantr 481 . . . 4  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( Q  -  M )
) ^ 2 )  e.  CC )
1312addid1d 10236 . . 3  |-  ( (
ph  /\  P  =  M )  ->  (
( ( abs `  ( Q  -  M )
) ^ 2 )  +  0 )  =  ( ( abs `  ( Q  -  M )
) ^ 2 ) )
14 chordthmlem3.P . . . . . . . . 9  |-  ( ph  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
15 chordthmlem3.X . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  RR )
1615recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  CC )
1716, 3mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( X  x.  A
)  e.  CC )
18 1cnd 10056 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
1918, 16subcld 10392 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  -  X
)  e.  CC )
2019, 4mulcld 10060 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  -  X )  x.  B
)  e.  CC )
2117, 20addcld 10059 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  A )  +  ( ( 1  -  X
)  x.  B ) )  e.  CC )
2214, 21eqeltrd 2701 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
2322adantr 481 . . . . . . 7  |-  ( (
ph  /\  P  =  M )  ->  P  e.  CC )
24 simpr 477 . . . . . . 7  |-  ( (
ph  /\  P  =  M )  ->  P  =  M )
2523, 24subeq0bd 10456 . . . . . 6  |-  ( (
ph  /\  P  =  M )  ->  ( P  -  M )  =  0 )
2625abs00bd 14031 . . . . 5  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( P  -  M ) )  =  0 )
2726sq0id 12957 . . . 4  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( P  -  M )
) ^ 2 )  =  0 )
2827oveq2d 6666 . . 3  |-  ( (
ph  /\  P  =  M )  ->  (
( ( abs `  ( Q  -  M )
) ^ 2 )  +  ( ( abs `  ( P  -  M
) ) ^ 2 ) )  =  ( ( ( abs `  ( Q  -  M )
) ^ 2 )  +  0 ) )
291adantr 481 . . . . . 6  |-  ( (
ph  /\  P  =  M )  ->  Q  e.  CC )
3029, 23abssubd 14192 . . . . 5  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( Q  -  P ) )  =  ( abs `  ( P  -  Q )
) )
3124oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  P  =  M )  ->  ( Q  -  P )  =  ( Q  -  M ) )
3231fveq2d 6195 . . . . 5  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( Q  -  P ) )  =  ( abs `  ( Q  -  M )
) )
3330, 32eqtr3d 2658 . . . 4  |-  ( (
ph  /\  P  =  M )  ->  ( abs `  ( P  -  Q ) )  =  ( abs `  ( Q  -  M )
) )
3433oveq1d 6665 . . 3  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( abs `  ( Q  -  M
) ) ^ 2 ) )
3513, 28, 343eqtr4rd 2667 . 2  |-  ( (
ph  /\  P  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
3622, 7subcld 10392 . . . . . . . 8  |-  ( ph  ->  ( P  -  M
)  e.  CC )
3736abscld 14175 . . . . . . 7  |-  ( ph  ->  ( abs `  ( P  -  M )
)  e.  RR )
3837recnd 10068 . . . . . 6  |-  ( ph  ->  ( abs `  ( P  -  M )
)  e.  CC )
3938sqcld 13006 . . . . 5  |-  ( ph  ->  ( ( abs `  ( P  -  M )
) ^ 2 )  e.  CC )
4039adantr 481 . . . 4  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( P  -  M )
) ^ 2 )  e.  CC )
4140addid2d 10237 . . 3  |-  ( (
ph  /\  Q  =  M )  ->  (
0  +  ( ( abs `  ( P  -  M ) ) ^ 2 ) )  =  ( ( abs `  ( P  -  M
) ) ^ 2 ) )
421adantr 481 . . . . . . 7  |-  ( (
ph  /\  Q  =  M )  ->  Q  e.  CC )
43 simpr 477 . . . . . . 7  |-  ( (
ph  /\  Q  =  M )  ->  Q  =  M )
4442, 43subeq0bd 10456 . . . . . 6  |-  ( (
ph  /\  Q  =  M )  ->  ( Q  -  M )  =  0 )
4544abs00bd 14031 . . . . 5  |-  ( (
ph  /\  Q  =  M )  ->  ( abs `  ( Q  -  M ) )  =  0 )
4645sq0id 12957 . . . 4  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( Q  -  M )
) ^ 2 )  =  0 )
4746oveq1d 6665 . . 3  |-  ( (
ph  /\  Q  =  M )  ->  (
( ( abs `  ( Q  -  M )
) ^ 2 )  +  ( ( abs `  ( P  -  M
) ) ^ 2 ) )  =  ( 0  +  ( ( abs `  ( P  -  M ) ) ^ 2 ) ) )
4843oveq2d 6666 . . . . 5  |-  ( (
ph  /\  Q  =  M )  ->  ( P  -  Q )  =  ( P  -  M ) )
4948fveq2d 6195 . . . 4  |-  ( (
ph  /\  Q  =  M )  ->  ( abs `  ( P  -  Q ) )  =  ( abs `  ( P  -  M )
) )
5049oveq1d 6665 . . 3  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( abs `  ( P  -  M
) ) ^ 2 ) )
5141, 47, 503eqtr4rd 2667 . 2  |-  ( (
ph  /\  Q  =  M )  ->  (
( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
5222adantr 481 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  P  e.  CC )
531adantr 481 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  Q  e.  CC )
547adantr 481 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  M  e.  CC )
55 simprl 794 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  P  =/=  M )
56 simprr 796 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  Q  =/=  M )
57 eqid 2622 . . . 4  |-  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( Im
`  ( log `  (
y  /  x ) ) ) )  =  ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) )
583adantr 481 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  A  e.  CC )
594adantr 481 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  B  e.  CC )
6015adantr 481 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  X  e.  RR )
612adantr 481 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  M  =  ( ( A  +  B )  /  2 ) )
6214adantr 481 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  ->  P  =  ( ( X  x.  A )  +  ( ( 1  -  X )  x.  B ) ) )
63 chordthmlem3.ABequidistQ . . . . 5  |-  ( ph  ->  ( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
6463adantr 481 . . . 4  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  -> 
( abs `  ( A  -  Q )
)  =  ( abs `  ( B  -  Q
) ) )
6557, 58, 59, 53, 60, 61, 62, 64, 55, 56chordthmlem2 24560 . . 3  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  -> 
( ( Q  -  M ) ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( Im
`  ( log `  (
y  /  x ) ) ) ) ( P  -  M ) )  e.  { ( pi  /  2 ) ,  -u ( pi  / 
2 ) } )
66 eqid 2622 . . . 4  |-  ( abs `  ( Q  -  M
) )  =  ( abs `  ( Q  -  M ) )
67 eqid 2622 . . . 4  |-  ( abs `  ( P  -  M
) )  =  ( abs `  ( P  -  M ) )
68 eqid 2622 . . . 4  |-  ( abs `  ( P  -  Q
) )  =  ( abs `  ( P  -  Q ) )
69 eqid 2622 . . . 4  |-  ( ( Q  -  M ) ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) ) ( P  -  M ) )  =  ( ( Q  -  M ) ( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( Im
`  ( log `  (
y  /  x ) ) ) ) ( P  -  M ) )
7057, 66, 67, 68, 69pythag 24547 . . 3  |-  ( ( ( P  e.  CC  /\  Q  e.  CC  /\  M  e.  CC )  /\  ( P  =/=  M  /\  Q  =/=  M
)  /\  ( ( Q  -  M )
( x  e.  ( CC  \  { 0 } ) ,  y  e.  ( CC  \  { 0 } ) 
|->  ( Im `  ( log `  ( y  /  x ) ) ) ) ( P  -  M ) )  e. 
{ ( pi  / 
2 ) ,  -u ( pi  /  2
) } )  -> 
( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
7152, 53, 54, 55, 56, 65, 70syl321anc 1348 . 2  |-  ( (
ph  /\  ( P  =/=  M  /\  Q  =/= 
M ) )  -> 
( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
7235, 51, 71pm2.61da2ne 2882 1  |-  ( ph  ->  ( ( abs `  ( P  -  Q )
) ^ 2 )  =  ( ( ( abs `  ( Q  -  M ) ) ^ 2 )  +  ( ( abs `  ( P  -  M )
) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   ^cexp 12860   Imcim 13838   abscabs 13974   picpi 14797   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  chordthmlem5  24563
  Copyright terms: Public domain W3C validator