Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clim1fr1 Structured version   Visualization version   Unicode version

Theorem clim1fr1 39833
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
clim1fr1.1  |-  F  =  ( n  e.  NN  |->  ( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
) )
clim1fr1.2  |-  ( ph  ->  A  e.  CC )
clim1fr1.3  |-  ( ph  ->  A  =/=  0 )
clim1fr1.4  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
clim1fr1  |-  ( ph  ->  F  ~~>  1 )
Distinct variable groups:    ph, n    A, n    B, n
Allowed substitution hint:    F( n)

Proof of Theorem clim1fr1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 nnex 11026 . . . . . 6  |-  NN  e.  _V
43mptex 6486 . . . . 5  |-  ( n  e.  NN  |->  1 )  e.  _V
54a1i 11 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  1 )  e.  _V )
6 1cnd 10056 . . . 4  |-  ( ph  ->  1  e.  CC )
7 eqidd 2623 . . . . . 6  |-  ( k  e.  NN  ->  (
n  e.  NN  |->  1 )  =  ( n  e.  NN  |->  1 ) )
8 eqidd 2623 . . . . . 6  |-  ( ( k  e.  NN  /\  n  =  k )  ->  1  =  1 )
9 id 22 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN )
10 1cnd 10056 . . . . . 6  |-  ( k  e.  NN  ->  1  e.  CC )
117, 8, 9, 10fvmptd 6288 . . . . 5  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  1 ) `  k
)  =  1 )
1211adantl 482 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  1 ) `  k )  =  1 )
131, 2, 5, 6, 12climconst 14274 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  1 )  ~~>  1 )
14 clim1fr1.1 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
) )
153mptex 6486 . . . . 5  |-  ( n  e.  NN  |->  ( ( ( A  x.  n
)  +  B )  /  ( A  x.  n ) ) )  e.  _V
1614, 15eqeltri 2697 . . . 4  |-  F  e. 
_V
1716a1i 11 . . 3  |-  ( ph  ->  F  e.  _V )
18 clim1fr1.4 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
1918adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  B  e.  CC )
20 clim1fr1.2 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
2120adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  CC )
22 nncn 11028 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  CC )
2322adantl 482 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
24 clim1fr1.3 . . . . . . 7  |-  ( ph  ->  A  =/=  0 )
2524adantr 481 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  =/=  0 )
26 nnne0 11053 . . . . . . 7  |-  ( n  e.  NN  ->  n  =/=  0 )
2726adantl 482 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
2819, 21, 23, 25, 27divdiv1d 10832 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B  /  A )  /  n )  =  ( B  /  ( A  x.  n )
) )
2928mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  ( ( B  /  A )  /  n
) )  =  ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) ) )
3018, 20, 24divcld 10801 . . . . 5  |-  ( ph  ->  ( B  /  A
)  e.  CC )
31 divcnv 14585 . . . . 5  |-  ( ( B  /  A )  e.  CC  ->  (
n  e.  NN  |->  ( ( B  /  A
)  /  n ) )  ~~>  0 )
3230, 31syl 17 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  ( ( B  /  A )  /  n
) )  ~~>  0 )
3329, 32eqbrtrrd 4677 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( B  /  ( A  x.  n )
) )  ~~>  0 )
34 eqid 2622 . . . . . 6  |-  ( n  e.  NN  |->  1 )  =  ( n  e.  NN  |->  1 )
35 1cnd 10056 . . . . . 6  |-  ( n  e.  NN  ->  1  e.  CC )
3634, 35fmpti 6383 . . . . 5  |-  ( n  e.  NN  |->  1 ) : NN --> CC
3736a1i 11 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  1 ) : NN --> CC )
3837ffvelrnda 6359 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  1 ) `  k )  e.  CC )
3921, 23mulcld 10060 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  x.  n )  e.  CC )
4021, 23, 25, 27mulne0d 10679 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  x.  n )  =/=  0 )
4119, 39, 40divcld 10801 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( B  /  ( A  x.  n ) )  e.  CC )
42 eqid 2622 . . . . 5  |-  ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) )  =  ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) )
4341, 42fmptd 6385 . . . 4  |-  ( ph  ->  ( n  e.  NN  |->  ( B  /  ( A  x.  n )
) ) : NN --> CC )
4443ffvelrnda 6359 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) ) `  k )  e.  CC )
4514a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  F  =  ( n  e.  NN  |->  ( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
) ) )
46 oveq2 6658 . . . . . . . 8  |-  ( n  =  k  ->  ( A  x.  n )  =  ( A  x.  k ) )
4746oveq1d 6665 . . . . . . 7  |-  ( n  =  k  ->  (
( A  x.  n
)  +  B )  =  ( ( A  x.  k )  +  B ) )
4847, 46oveq12d 6668 . . . . . 6  |-  ( n  =  k  ->  (
( ( A  x.  n )  +  B
)  /  ( A  x.  n ) )  =  ( ( ( A  x.  k )  +  B )  / 
( A  x.  k
) ) )
4948adantl 482 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  -> 
( ( ( A  x.  n )  +  B )  /  ( A  x.  n )
)  =  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) ) )
50 simpr 477 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
5120adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
5250nncnd 11036 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
5351, 52mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  k )  e.  CC )
5418adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
5553, 54addcld 10059 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  k )  +  B )  e.  CC )
5624adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  A  =/=  0 )
5750nnne0d 11065 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  k  =/=  0 )
5851, 52, 56, 57mulne0d 10679 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  k )  =/=  0 )
5955, 53, 58divcld 10801 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) )  e.  CC )
6045, 49, 50, 59fvmptd 6288 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( ( A  x.  k )  +  B )  /  ( A  x.  k )
) )
6153, 54, 53, 58divdird 10839 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) )  =  ( ( ( A  x.  k )  / 
( A  x.  k
) )  +  ( B  /  ( A  x.  k ) ) ) )
6253, 58dividd 10799 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  k )  /  ( A  x.  k ) )  =  1 )
6362oveq1d 6665 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  /  ( A  x.  k ) )  +  ( B  / 
( A  x.  k
) ) )  =  ( 1  +  ( B  /  ( A  x.  k ) ) ) )
6461, 63eqtrd 2656 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( A  x.  k
)  +  B )  /  ( A  x.  k ) )  =  ( 1  +  ( B  /  ( A  x.  k ) ) ) )
6512eqcomd 2628 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  1  =  ( ( n  e.  NN  |->  1 ) `  k ) )
66 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) )  =  ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) )
67 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  ->  n  =  k )
6867oveq2d 6666 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  -> 
( A  x.  n
)  =  ( A  x.  k ) )
6968oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  =  k )  -> 
( B  /  ( A  x.  n )
)  =  ( B  /  ( A  x.  k ) ) )
7054, 53, 58divcld 10801 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  /  ( A  x.  k ) )  e.  CC )
7166, 69, 50, 70fvmptd 6288 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( B  /  ( A  x.  n ) ) ) `  k )  =  ( B  / 
( A  x.  k
) ) )
7271eqcomd 2628 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( B  /  ( A  x.  k ) )  =  ( ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) `  k ) )
7365, 72oveq12d 6668 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  +  ( B  / 
( A  x.  k
) ) )  =  ( ( ( n  e.  NN  |->  1 ) `
 k )  +  ( ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) `  k ) ) )
7460, 64, 733eqtrd 2660 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( ( ( n  e.  NN  |->  1 ) `
 k )  +  ( ( n  e.  NN  |->  ( B  / 
( A  x.  n
) ) ) `  k ) ) )
751, 2, 13, 17, 33, 38, 44, 74climadd 14362 . 2  |-  ( ph  ->  F  ~~>  ( 1  +  0 ) )
76 1p0e1 11133 . 2  |-  ( 1  +  0 )  =  1
7775, 76syl6breq 4694 1  |-  ( ph  ->  F  ~~>  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    / cdiv 10684   NNcn 11020    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  wallispilem5  40286
  Copyright terms: Public domain W3C validator