Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsup2 Structured version   Visualization version   Unicode version

Theorem climliminflimsup2 40041
Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 40020). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsup2.1  |-  ( ph  ->  M  e.  ZZ )
climliminflimsup2.2  |-  Z  =  ( ZZ>= `  M )
climliminflimsup2.3  |-  ( ph  ->  F : Z --> RR )
Assertion
Ref Expression
climliminflimsup2  |-  ( ph  ->  ( F  e.  dom  ~~>  <->  (
( limsup `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) ) )

Proof of Theorem climliminflimsup2
StepHypRef Expression
1 climliminflimsup2.1 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 climliminflimsup2.2 . . 3  |-  Z  =  ( ZZ>= `  M )
3 climliminflimsup2.3 . . 3  |-  ( ph  ->  F : Z --> RR )
41, 2, 3climliminflimsup 40040 . 2  |-  ( ph  ->  ( F  e.  dom  ~~>  <->  (
(liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) ) )
51adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  M  e.  ZZ )
63adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  F : Z --> RR )
7 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  (liminf `  F )  e.  RR )
8 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  ( limsup `
 F )  <_ 
(liminf `  F )
)
95, 2, 6, 7, 8liminflimsupclim 40039 . . . . . 6  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  F  e.  dom  ~~>  )
101adantr 481 . . . . . . . 8  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  M  e.  ZZ )
113adantr 481 . . . . . . . 8  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  F : Z
--> RR )
12 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  F  e. 
dom 
~~>  )
1310, 2, 11, 12climliminflimsupd 40033 . . . . . . 7  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  (liminf `  F )  =  (
limsup `  F ) )
1413eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  F  e.  dom 
~~>  )  ->  ( limsup `  F )  =  (liminf `  F ) )
159, 14syldan 487 . . . . 5  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  ( limsup `
 F )  =  (liminf `  F )
)
1615, 7eqeltrd 2701 . . . 4  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  ( limsup `
 F )  e.  RR )
1716, 8jca 554 . . 3  |-  ( (
ph  /\  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )  ->  (
( limsup `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) )
18 simpr 477 . . . . . . 7  |-  ( (
ph  /\  ( limsup `  F )  <_  (liminf `  F ) )  -> 
( limsup `  F )  <_  (liminf `  F )
)
191adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( limsup `  F )  <_  (liminf `  F ) )  ->  M  e.  ZZ )
203adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( limsup `  F )  <_  (liminf `  F ) )  ->  F : Z --> RR )
2119, 2, 20liminfgelimsupuz 40020 . . . . . . 7  |-  ( (
ph  /\  ( limsup `  F )  <_  (liminf `  F ) )  -> 
( ( limsup `  F
)  <_  (liminf `  F
)  <->  (liminf `  F )  =  ( limsup `  F
) ) )
2218, 21mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( limsup `  F )  <_  (liminf `  F ) )  -> 
(liminf `  F )  =  ( limsup `  F
) )
2322adantrl 752 . . . . 5  |-  ( (
ph  /\  ( ( limsup `
 F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) )  ->  (liminf `  F )  =  ( limsup `  F
) )
24 simprl 794 . . . . 5  |-  ( (
ph  /\  ( ( limsup `
 F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) )  ->  ( limsup `  F
)  e.  RR )
2523, 24eqeltrd 2701 . . . 4  |-  ( (
ph  /\  ( ( limsup `
 F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) )  ->  (liminf `  F )  e.  RR )
26 simprr 796 . . . 4  |-  ( (
ph  /\  ( ( limsup `
 F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) )  ->  ( limsup `  F
)  <_  (liminf `  F
) )
2725, 26jca 554 . . 3  |-  ( (
ph  /\  ( ( limsup `
 F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) )  ->  ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) )
2817, 27impbida 877 . 2  |-  ( ph  ->  ( ( (liminf `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
)  <->  ( ( limsup `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F )
) ) )
294, 28bitrd 268 1  |-  ( ph  ->  ( F  e.  dom  ~~>  <->  (
( limsup `  F )  e.  RR  /\  ( limsup `  F )  <_  (liminf `  F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888   RRcr 9935    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   limsupclsp 14201    ~~> cli 14215  liminfclsi 39983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-ceil 12594  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-liminf 39984
This theorem is referenced by:  climliminflimsup4  40043
  Copyright terms: Public domain W3C validator