Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfuni Structured version   Visualization version   Unicode version

Theorem cncfuni 40099
Description: A function is continuous if it's domain is the union of sets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfuni.acn  |-  ( ph  ->  A  C_  CC )
cncfuni.f  |-  ( ph  ->  F : A --> CC )
cncfuni.auni  |-  ( ph  ->  A  C_  U. B )
cncfuni.opn  |-  ( (
ph  /\  b  e.  B )  ->  ( A  i^i  b )  e.  ( ( TopOpen ` fld )t  A ) )
cncfuni.fcn  |-  ( (
ph  /\  b  e.  B )  ->  ( F  |`  b )  e.  ( ( A  i^i  b ) -cn-> CC ) )
Assertion
Ref Expression
cncfuni  |-  ( ph  ->  F  e.  ( A
-cn-> CC ) )
Distinct variable groups:    A, b    B, b    F, b    ph, b

Proof of Theorem cncfuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cncfuni.f . . 3  |-  ( ph  ->  F : A --> CC )
2 cncfuni.auni . . . . . . 7  |-  ( ph  ->  A  C_  U. B )
32sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  U. B )
4 eluni2 4440 . . . . . 6  |-  ( x  e.  U. B  <->  E. b  e.  B  x  e.  b )
53, 4sylib 208 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  E. b  e.  B  x  e.  b )
6 simp1l 1085 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  b  e.  B  /\  x  e.  b )  ->  ph )
7 simp2 1062 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  b  e.  B  /\  x  e.  b )  ->  b  e.  B )
8 elin 3796 . . . . . . . . . 10  |-  ( x  e.  ( A  i^i  b )  <->  ( x  e.  A  /\  x  e.  b ) )
98biimpri 218 . . . . . . . . 9  |-  ( ( x  e.  A  /\  x  e.  b )  ->  x  e.  ( A  i^i  b ) )
109adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  x  e.  b )  ->  x  e.  ( A  i^i  b
) )
11103adant2 1080 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  b  e.  B  /\  x  e.  b )  ->  x  e.  ( A  i^i  b
) )
12 cncfuni.fcn . . . . . . . . . . . . . 14  |-  ( (
ph  /\  b  e.  B )  ->  ( F  |`  b )  e.  ( ( A  i^i  b ) -cn-> CC ) )
13 fdm 6051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : A --> CC  ->  dom 
F  =  A )
141, 13syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  F  =  A )
1514ineq2d 3814 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( b  i^i  dom  F )  =  ( b  i^i  A ) )
16 incom 3805 . . . . . . . . . . . . . . . . . . 19  |-  ( b  i^i  A )  =  ( A  i^i  b
)
1715, 16syl6req 2673 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  i^i  b
)  =  ( b  i^i  dom  F )
)
1817reseq2d 5396 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F  |`  ( A  i^i  b ) )  =  ( F  |`  ( b  i^i  dom  F ) ) )
19 frel 6050 . . . . . . . . . . . . . . . . . . 19  |-  ( F : A --> CC  ->  Rel 
F )
201, 19syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Rel  F )
21 resindm 5444 . . . . . . . . . . . . . . . . . 18  |-  ( Rel 
F  ->  ( F  |`  ( b  i^i  dom  F ) )  =  ( F  |`  b )
)
2220, 21syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F  |`  (
b  i^i  dom  F ) )  =  ( F  |`  b ) )
2318, 22eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F  |`  ( A  i^i  b ) )  =  ( F  |`  b ) )
24 inss1 3833 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  i^i  b )  C_  A
2524a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( A  i^i  b
)  C_  A )
26 cncfuni.acn . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  C_  CC )
2725, 26sstrd 3613 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A  i^i  b
)  C_  CC )
28 ssid 3624 . . . . . . . . . . . . . . . . . . 19  |-  CC  C_  CC
2928a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  CC  C_  CC )
30 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
31 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( (
TopOpen ` fld )t  ( A  i^i  b
) )  =  ( ( TopOpen ` fld )t  ( A  i^i  b ) )
3230cnfldtop 22587 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen ` fld )  e.  Top
33 unicntop 22589 . . . . . . . . . . . . . . . . . . . . . 22  |-  CC  =  U. ( TopOpen ` fld )
3433restid 16094 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
3532, 34ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
3635eqcomi 2631 . . . . . . . . . . . . . . . . . . 19  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
3730, 31, 36cncfcn 22712 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  i^i  b
)  C_  CC  /\  CC  C_  CC )  ->  (
( A  i^i  b
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) ) )
3827, 29, 37syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( A  i^i  b ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( A  i^i  b
) )  Cn  ( TopOpen
` fld
) ) )
3938eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) )  =  ( ( A  i^i  b
) -cn-> CC ) )
4023, 39eleq12d 2695 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( F  |`  ( A  i^i  b
) )  e.  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) )  <->  ( F  |`  b )  e.  ( ( A  i^i  b
) -cn-> CC ) ) )
4140adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  b  e.  B )  ->  (
( F  |`  ( A  i^i  b ) )  e.  ( ( (
TopOpen ` fld )t  ( A  i^i  b
) )  Cn  ( TopOpen
` fld
) )  <->  ( F  |`  b )  e.  ( ( A  i^i  b
) -cn-> CC ) ) )
4212, 41mpbird 247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  b  e.  B )  ->  ( F  |`  ( A  i^i  b ) )  e.  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) ) )
43423adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( F  |`  ( A  i^i  b
) )  e.  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) ) )
4430cnfldtopon 22586 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
4544a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
46 resttopon 20965 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( A  i^i  b )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( A  i^i  b
) )  e.  (TopOn `  ( A  i^i  b
) ) )
4745, 27, 46syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A  i^i  b ) )  e.  (TopOn `  ( A  i^i  b ) ) )
48473ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( ( TopOpen
` fld
)t  ( A  i^i  b
) )  e.  (TopOn `  ( A  i^i  b
) ) )
4944a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC )
)
50 cncnp 21084 . . . . . . . . . . . . 13  |-  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  e.  (TopOn `  ( A  i^i  b ) )  /\  ( TopOpen ` fld )  e.  (TopOn `  CC ) )  -> 
( ( F  |`  ( A  i^i  b
) )  e.  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) )  <->  ( ( F  |`  ( A  i^i  b ) ) : ( A  i^i  b
) --> CC  /\  A. x  e.  ( A  i^i  b ) ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) ) ) )
5148, 49, 50syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( ( F  |`  ( A  i^i  b ) )  e.  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  Cn  ( TopOpen ` fld ) )  <->  ( ( F  |`  ( A  i^i  b ) ) : ( A  i^i  b
) --> CC  /\  A. x  e.  ( A  i^i  b ) ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) ) ) )
5243, 51mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( ( F  |`  ( A  i^i  b ) ) : ( A  i^i  b
) --> CC  /\  A. x  e.  ( A  i^i  b ) ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) ) )
5352simprd 479 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  A. x  e.  ( A  i^i  b
) ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) )
54 simp3 1063 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  x  e.  ( A  i^i  b
) )
55 rspa 2930 . . . . . . . . . 10  |-  ( ( A. x  e.  ( A  i^i  b ) ( F  |`  ( A  i^i  b ) )  e.  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
)  /\  x  e.  ( A  i^i  b
) )  ->  ( F  |`  ( A  i^i  b ) )  e.  ( ( ( (
TopOpen ` fld )t  ( A  i^i  b
) )  CnP  ( TopOpen
` fld
) ) `  x
) )
5653, 54, 55syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) )
5732a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( TopOpen ` fld )  e.  Top )
58 cnex 10017 . . . . . . . . . . . . . . . 16  |-  CC  e.  _V
5958ssex 4802 . . . . . . . . . . . . . . 15  |-  ( A 
C_  CC  ->  A  e. 
_V )
6026, 59syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  _V )
61 restabs 20969 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( A  i^i  b
)  C_  A  /\  A  e.  _V )  ->  ( ( ( TopOpen ` fld )t  A
)t  ( A  i^i  b
) )  =  ( ( TopOpen ` fld )t  ( A  i^i  b ) ) )
6257, 25, 60, 61syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  A
)t  ( A  i^i  b
) )  =  ( ( TopOpen ` fld )t  ( A  i^i  b ) ) )
6362eqcomd 2628 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A  i^i  b ) )  =  ( ( ( TopOpen ` fld )t  A
)t  ( A  i^i  b
) ) )
6463oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) )  =  ( ( ( ( TopOpen ` fld )t  A
)t  ( A  i^i  b
) )  CnP  ( TopOpen
` fld
) ) )
6564fveq1d 6193 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( (
TopOpen ` fld )t  ( A  i^i  b
) )  CnP  ( TopOpen
` fld
) ) `  x
)  =  ( ( ( ( ( TopOpen ` fld )t  A
)t  ( A  i^i  b
) )  CnP  ( TopOpen
` fld
) ) `  x
) )
66653ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( (
( ( TopOpen ` fld )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
)  =  ( ( ( ( ( TopOpen ` fld )t  A
)t  ( A  i^i  b
) )  CnP  ( TopOpen
` fld
) ) `  x
) )
6756, 66eleqtrd 2703 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( (
TopOpen ` fld )t  A )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) )
68 resttop 20964 . . . . . . . . . . 11  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  A  e.  _V )  ->  ( ( TopOpen ` fld )t  A )  e.  Top )
6957, 60, 68syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( TopOpen ` fld )t  A )  e.  Top )
70693ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( ( TopOpen
` fld
)t 
A )  e.  Top )
7133restuni 20966 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  A  C_  CC )  ->  A  =  U. (
( TopOpen ` fld )t  A ) )
7257, 26, 71syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  A  =  U. (
( TopOpen ` fld )t  A ) )
7325, 72sseqtrd 3641 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  b
)  C_  U. (
( TopOpen ` fld )t  A ) )
74733ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( A  i^i  b )  C_  U. (
( TopOpen ` fld )t  A ) )
75 cncfuni.opn . . . . . . . . . . . . 13  |-  ( (
ph  /\  b  e.  B )  ->  ( A  i^i  b )  e.  ( ( TopOpen ` fld )t  A ) )
76753adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( A  i^i  b )  e.  ( ( TopOpen ` fld )t  A ) )
77 eqid 2622 . . . . . . . . . . . . . 14  |-  U. (
( TopOpen ` fld )t  A )  =  U. ( ( TopOpen ` fld )t  A )
7877isopn3 20870 . . . . . . . . . . . . 13  |-  ( ( ( ( TopOpen ` fld )t  A )  e.  Top  /\  ( A  i^i  b
)  C_  U. (
( TopOpen ` fld )t  A ) )  -> 
( ( A  i^i  b )  e.  ( ( TopOpen ` fld )t  A )  <->  ( ( int `  ( ( TopOpen ` fld )t  A
) ) `  ( A  i^i  b ) )  =  ( A  i^i  b ) ) )
7970, 74, 78syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( ( A  i^i  b )  e.  ( ( TopOpen ` fld )t  A )  <->  ( ( int `  ( ( TopOpen ` fld )t  A
) ) `  ( A  i^i  b ) )  =  ( A  i^i  b ) ) )
8076, 79mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( ( int `  ( ( TopOpen ` fld )t  A
) ) `  ( A  i^i  b ) )  =  ( A  i^i  b ) )
8180eqcomd 2628 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( A  i^i  b )  =  ( ( int `  (
( TopOpen ` fld )t  A ) ) `  ( A  i^i  b
) ) )
8254, 81eleqtrd 2703 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  x  e.  ( ( int `  (
( TopOpen ` fld )t  A ) ) `  ( A  i^i  b
) ) )
8372feq2d 6031 . . . . . . . . . . 11  |-  ( ph  ->  ( F : A --> CC 
<->  F : U. (
( TopOpen ` fld )t  A ) --> CC ) )
841, 83mpbid 222 . . . . . . . . . 10  |-  ( ph  ->  F : U. (
( TopOpen ` fld )t  A ) --> CC )
85843ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  F : U. ( ( TopOpen ` fld )t  A ) --> CC )
8677, 33cnprest 21093 . . . . . . . . 9  |-  ( ( ( ( ( TopOpen ` fld )t  A
)  e.  Top  /\  ( A  i^i  b
)  C_  U. (
( TopOpen ` fld )t  A ) )  /\  ( x  e.  (
( int `  (
( TopOpen ` fld )t  A ) ) `  ( A  i^i  b
) )  /\  F : U. ( ( TopOpen ` fld )t  A
) --> CC ) )  ->  ( F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
)  <->  ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( (
TopOpen ` fld )t  A )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) ) )
8770, 74, 82, 85, 86syl22anc 1327 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  ( F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
)  <->  ( F  |`  ( A  i^i  b
) )  e.  ( ( ( ( (
TopOpen ` fld )t  A )t  ( A  i^i  b ) )  CnP  ( TopOpen ` fld ) ) `  x
) ) )
8867, 87mpbird 247 . . . . . . 7  |-  ( (
ph  /\  b  e.  B  /\  x  e.  ( A  i^i  b ) )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) )
896, 7, 11, 88syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  b  e.  B  /\  x  e.  b )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) )
9089rexlimdv3a 3033 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( E. b  e.  B  x  e.  b  ->  F  e.  ( ( ( ( TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) )
915, 90mpd 15 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) )
9291ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  A  F  e.  ( (
( ( TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) )
93 resttopon 20965 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  (
( TopOpen ` fld )t  A )  e.  (TopOn `  A ) )
9445, 26, 93syl2anc 693 . . . 4  |-  ( ph  ->  ( ( TopOpen ` fld )t  A )  e.  (TopOn `  A ) )
95 cncnp 21084 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  A )  e.  (TopOn `  A )  /\  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )  ->  ( F  e.  ( (
( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) )  <->  ( F : A --> CC  /\  A. x  e.  A  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) ) )
9694, 45, 95syl2anc 693 . . 3  |-  ( ph  ->  ( F  e.  ( ( ( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) )  <->  ( F : A --> CC  /\  A. x  e.  A  F  e.  ( ( ( (
TopOpen ` fld )t  A )  CnP  ( TopOpen
` fld
) ) `  x
) ) ) )
971, 92, 96mpbir2and 957 . 2  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) ) )
98 eqid 2622 . . . . 5  |-  ( (
TopOpen ` fld )t  A )  =  ( ( TopOpen ` fld )t  A )
9930, 98, 36cncfcn 22712 . . . 4  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  ( A -cn-> CC )  =  ( ( ( TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) ) )
10026, 29, 99syl2anc 693 . . 3  |-  ( ph  ->  ( A -cn-> CC )  =  ( ( (
TopOpen ` fld )t  A )  Cn  ( TopOpen
` fld
) ) )
101100eqcomd 2628 . 2  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  A
)  Cn  ( TopOpen ` fld )
)  =  ( A
-cn-> CC ) )
10297, 101eleqtrd 2703 1  |-  ( ph  ->  F  e.  ( A
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   U.cuni 4436   dom cdm 5114    |` cres 5116   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821    Cn ccn 21028    CnP ccnp 21029   -cn->ccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-cncf 22681
This theorem is referenced by:  fouriersw  40448
  Copyright terms: Public domain W3C validator