MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumd Structured version   Visualization version   Unicode version

Theorem coe1fzgsumd 19672
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p  |-  P  =  (Poly1 `  R )
coe1fzgsumd.b  |-  B  =  ( Base `  P
)
coe1fzgsumd.r  |-  ( ph  ->  R  e.  Ring )
coe1fzgsumd.k  |-  ( ph  ->  K  e.  NN0 )
coe1fzgsumd.m  |-  ( ph  ->  A. x  e.  N  M  e.  B )
coe1fzgsumd.n  |-  ( ph  ->  N  e.  Fin )
Assertion
Ref Expression
coe1fzgsumd  |-  ( ph  ->  ( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) )
Distinct variable groups:    x, B    x, K    x, N
Allowed substitution hints:    ph( x)    P( x)    R( x)    M( x)

Proof of Theorem coe1fzgsumd
Dummy variables  a  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1fzgsumd.m . 2  |-  ( ph  ->  A. x  e.  N  M  e.  B )
2 coe1fzgsumd.n . . 3  |-  ( ph  ->  N  e.  Fin )
3 raleq 3138 . . . . . . 7  |-  ( n  =  (/)  ->  ( A. x  e.  n  M  e.  B  <->  A. x  e.  (/)  M  e.  B ) )
43anbi2d 740 . . . . . 6  |-  ( n  =  (/)  ->  ( (
ph  /\  A. x  e.  n  M  e.  B )  <->  ( ph  /\ 
A. x  e.  (/)  M  e.  B ) ) )
5 mpteq1 4737 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( x  e.  n  |->  M )  =  ( x  e.  (/)  |->  M ) )
65oveq2d 6666 . . . . . . . . 9  |-  ( n  =  (/)  ->  ( P 
gsumg  ( x  e.  n  |->  M ) )  =  ( P  gsumg  ( x  e.  (/)  |->  M ) ) )
76fveq2d 6195 . . . . . . . 8  |-  ( n  =  (/)  ->  (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) )  =  (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) )
87fveq1d 6193 . . . . . . 7  |-  ( n  =  (/)  ->  ( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `
 K )  =  ( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `  K ) )
9 mpteq1 4737 . . . . . . . 8  |-  ( n  =  (/)  ->  ( x  e.  n  |->  ( (coe1 `  M ) `  K
) )  =  ( x  e.  (/)  |->  ( (coe1 `  M ) `  K
) ) )
109oveq2d 6666 . . . . . . 7  |-  ( n  =  (/)  ->  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  =  ( R  gsumg  ( x  e.  (/)  |->  ( (coe1 `  M
) `  K )
) ) )
118, 10eqeq12d 2637 . . . . . 6  |-  ( n  =  (/)  ->  ( ( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  <-> 
( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `  K )  =  ( R  gsumg  ( x  e.  (/)  |->  ( (coe1 `  M
) `  K )
) ) ) )
124, 11imbi12d 334 . . . . 5  |-  ( n  =  (/)  ->  ( ( ( ph  /\  A. x  e.  n  M  e.  B )  ->  (
(coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) ) )  <->  ( ( ph  /\ 
A. x  e.  (/)  M  e.  B )  -> 
( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `  K )  =  ( R  gsumg  ( x  e.  (/)  |->  ( (coe1 `  M
) `  K )
) ) ) ) )
13 raleq 3138 . . . . . . 7  |-  ( n  =  m  ->  ( A. x  e.  n  M  e.  B  <->  A. x  e.  m  M  e.  B ) )
1413anbi2d 740 . . . . . 6  |-  ( n  =  m  ->  (
( ph  /\  A. x  e.  n  M  e.  B )  <->  ( ph  /\ 
A. x  e.  m  M  e.  B )
) )
15 mpteq1 4737 . . . . . . . . . 10  |-  ( n  =  m  ->  (
x  e.  n  |->  M )  =  ( x  e.  m  |->  M ) )
1615oveq2d 6666 . . . . . . . . 9  |-  ( n  =  m  ->  ( P  gsumg  ( x  e.  n  |->  M ) )  =  ( P  gsumg  ( x  e.  m  |->  M ) ) )
1716fveq2d 6195 . . . . . . . 8  |-  ( n  =  m  ->  (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) )  =  (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) )
1817fveq1d 6193 . . . . . . 7  |-  ( n  =  m  ->  (
(coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `
 K ) )
19 mpteq1 4737 . . . . . . . 8  |-  ( n  =  m  ->  (
x  e.  n  |->  ( (coe1 `  M ) `  K ) )  =  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) )
2019oveq2d 6666 . . . . . . 7  |-  ( n  =  m  ->  ( R  gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  =  ( R  gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K
) ) ) )
2118, 20eqeq12d 2637 . . . . . 6  |-  ( n  =  m  ->  (
( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  <-> 
( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) ) )
2214, 21imbi12d 334 . . . . 5  |-  ( n  =  m  ->  (
( ( ph  /\  A. x  e.  n  M  e.  B )  -> 
( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) ) )  <->  ( ( ph  /\ 
A. x  e.  m  M  e.  B )  ->  ( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) ) ) )
23 raleq 3138 . . . . . . 7  |-  ( n  =  ( m  u. 
{ a } )  ->  ( A. x  e.  n  M  e.  B 
<-> 
A. x  e.  ( m  u.  { a } ) M  e.  B ) )
2423anbi2d 740 . . . . . 6  |-  ( n  =  ( m  u. 
{ a } )  ->  ( ( ph  /\ 
A. x  e.  n  M  e.  B )  <->  (
ph  /\  A. x  e.  ( m  u.  {
a } ) M  e.  B ) ) )
25 mpteq1 4737 . . . . . . . . . 10  |-  ( n  =  ( m  u. 
{ a } )  ->  ( x  e.  n  |->  M )  =  ( x  e.  ( m  u.  { a } )  |->  M ) )
2625oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( m  u. 
{ a } )  ->  ( P  gsumg  ( x  e.  n  |->  M ) )  =  ( P 
gsumg  ( x  e.  (
m  u.  { a } )  |->  M ) ) )
2726fveq2d 6195 . . . . . . . 8  |-  ( n  =  ( m  u. 
{ a } )  ->  (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) )  =  (coe1 `  ( P  gsumg  ( x  e.  ( m  u.  { a } )  |->  M ) ) ) )
2827fveq1d 6193 . . . . . . 7  |-  ( n  =  ( m  u. 
{ a } )  ->  ( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `
 K )  =  ( (coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K ) )
29 mpteq1 4737 . . . . . . . 8  |-  ( n  =  ( m  u. 
{ a } )  ->  ( x  e.  n  |->  ( (coe1 `  M
) `  K )
)  =  ( x  e.  ( m  u. 
{ a } ) 
|->  ( (coe1 `  M ) `  K ) ) )
3029oveq2d 6666 . . . . . . 7  |-  ( n  =  ( m  u. 
{ a } )  ->  ( R  gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K
) ) )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) )
3128, 30eqeq12d 2637 . . . . . 6  |-  ( n  =  ( m  u. 
{ a } )  ->  ( ( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  <-> 
( (coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) )
3224, 31imbi12d 334 . . . . 5  |-  ( n  =  ( m  u. 
{ a } )  ->  ( ( (
ph  /\  A. x  e.  n  M  e.  B )  ->  (
(coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) ) )  <->  ( ( ph  /\ 
A. x  e.  ( m  u.  { a } ) M  e.  B )  ->  (
(coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) ) )
33 raleq 3138 . . . . . . 7  |-  ( n  =  N  ->  ( A. x  e.  n  M  e.  B  <->  A. x  e.  N  M  e.  B ) )
3433anbi2d 740 . . . . . 6  |-  ( n  =  N  ->  (
( ph  /\  A. x  e.  n  M  e.  B )  <->  ( ph  /\ 
A. x  e.  N  M  e.  B )
) )
35 mpteq1 4737 . . . . . . . . . 10  |-  ( n  =  N  ->  (
x  e.  n  |->  M )  =  ( x  e.  N  |->  M ) )
3635oveq2d 6666 . . . . . . . . 9  |-  ( n  =  N  ->  ( P  gsumg  ( x  e.  n  |->  M ) )  =  ( P  gsumg  ( x  e.  N  |->  M ) ) )
3736fveq2d 6195 . . . . . . . 8  |-  ( n  =  N  ->  (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) )  =  (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) )
3837fveq1d 6193 . . . . . . 7  |-  ( n  =  N  ->  (
(coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `
 K ) )
39 mpteq1 4737 . . . . . . . 8  |-  ( n  =  N  ->  (
x  e.  n  |->  ( (coe1 `  M ) `  K ) )  =  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) )
4039oveq2d 6666 . . . . . . 7  |-  ( n  =  N  ->  ( R  gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  =  ( R  gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K
) ) ) )
4138, 40eqeq12d 2637 . . . . . 6  |-  ( n  =  N  ->  (
( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) )  <-> 
( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) ) )
4234, 41imbi12d 334 . . . . 5  |-  ( n  =  N  ->  (
( ( ph  /\  A. x  e.  n  M  e.  B )  -> 
( (coe1 `  ( P  gsumg  ( x  e.  n  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  n  |->  ( (coe1 `  M ) `  K ) ) ) )  <->  ( ( ph  /\ 
A. x  e.  N  M  e.  B )  ->  ( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) ) ) )
43 mpt0 6021 . . . . . . . . . . . . 13  |-  ( x  e.  (/)  |->  M )  =  (/)
4443oveq2i 6661 . . . . . . . . . . . 12  |-  ( P 
gsumg  ( x  e.  (/)  |->  M ) )  =  ( P 
gsumg  (/) )
45 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  P )  =  ( 0g `  P
)
4645gsum0 17278 . . . . . . . . . . . 12  |-  ( P 
gsumg  (/) )  =  ( 0g
`  P )
4744, 46eqtri 2644 . . . . . . . . . . 11  |-  ( P 
gsumg  ( x  e.  (/)  |->  M ) )  =  ( 0g
`  P )
4847fveq2i 6194 . . . . . . . . . 10  |-  (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) )  =  (coe1 `  ( 0g `  P ) )
4948a1i 11 . . . . . . . . 9  |-  ( ph  ->  (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) )  =  (coe1 `  ( 0g `  P ) ) )
5049fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `  K )  =  ( (coe1 `  ( 0g `  P ) ) `
 K ) )
51 coe1fzgsumd.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
52 coe1fzgsumd.p . . . . . . . . . . 11  |-  P  =  (Poly1 `  R )
53 eqid 2622 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
5452, 45, 53coe1z 19633 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (coe1 `  ( 0g `  P ) )  =  ( NN0  X.  { ( 0g `  R ) } ) )
5551, 54syl 17 . . . . . . . . 9  |-  ( ph  ->  (coe1 `  ( 0g `  P ) )  =  ( NN0  X.  {
( 0g `  R
) } ) )
5655fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( (coe1 `  ( 0g `  P ) ) `  K )  =  ( ( NN0  X.  {
( 0g `  R
) } ) `  K ) )
57 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
58 coe1fzgsumd.k . . . . . . . . 9  |-  ( ph  ->  K  e.  NN0 )
59 fvconst2g 6467 . . . . . . . . 9  |-  ( ( ( 0g `  R
)  e.  _V  /\  K  e.  NN0 )  -> 
( ( NN0  X.  { ( 0g `  R ) } ) `
 K )  =  ( 0g `  R
) )
6057, 58, 59sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( ( NN0  X.  { ( 0g `  R ) } ) `
 K )  =  ( 0g `  R
) )
6150, 56, 603eqtrd 2660 . . . . . . 7  |-  ( ph  ->  ( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `  K )  =  ( 0g `  R ) )
62 mpt0 6021 . . . . . . . . 9  |-  ( x  e.  (/)  |->  ( (coe1 `  M
) `  K )
)  =  (/)
6362oveq2i 6661 . . . . . . . 8  |-  ( R 
gsumg  ( x  e.  (/)  |->  ( (coe1 `  M ) `  K
) ) )  =  ( R  gsumg  (/) )
6453gsum0 17278 . . . . . . . 8  |-  ( R 
gsumg  (/) )  =  ( 0g
`  R )
6563, 64eqtri 2644 . . . . . . 7  |-  ( R 
gsumg  ( x  e.  (/)  |->  ( (coe1 `  M ) `  K
) ) )  =  ( 0g `  R
)
6661, 65syl6eqr 2674 . . . . . 6  |-  ( ph  ->  ( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `  K )  =  ( R  gsumg  ( x  e.  (/)  |->  ( (coe1 `  M
) `  K )
) ) )
6766adantr 481 . . . . 5  |-  ( (
ph  /\  A. x  e.  (/)  M  e.  B
)  ->  ( (coe1 `  ( P  gsumg  ( x  e.  (/)  |->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  (/)  |->  ( (coe1 `  M ) `  K ) ) ) )
68 coe1fzgsumd.b . . . . . . . . 9  |-  B  =  ( Base `  P
)
6952, 68, 51, 58coe1fzgsumdlem 19671 . . . . . . . 8  |-  ( ( m  e.  Fin  /\  -.  a  e.  m  /\  ph )  ->  (
( A. x  e.  m  M  e.  B  ->  ( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) )  ->  ( A. x  e.  ( m  u.  { a } ) M  e.  B  -> 
( (coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) ) )
70693expia 1267 . . . . . . 7  |-  ( ( m  e.  Fin  /\  -.  a  e.  m
)  ->  ( ph  ->  ( ( A. x  e.  m  M  e.  B  ->  ( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) )  ->  ( A. x  e.  ( m  u.  { a } ) M  e.  B  -> 
( (coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) ) ) )
7170a2d 29 . . . . . 6  |-  ( ( m  e.  Fin  /\  -.  a  e.  m
)  ->  ( ( ph  ->  ( A. x  e.  m  M  e.  B  ->  ( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) ) )  ->  ( ph  ->  ( A. x  e.  ( m  u.  {
a } ) M  e.  B  ->  (
(coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) ) ) )
72 impexp 462 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  m  M  e.  B )  ->  (
(coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) )  <->  ( ph  ->  ( A. x  e.  m  M  e.  B  ->  ( (coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) ) ) )
73 impexp 462 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  ( m  u.  { a } ) M  e.  B )  ->  ( (coe1 `  ( P  gsumg  ( x  e.  ( m  u.  { a } )  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  (
m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) )  <-> 
( ph  ->  ( A. x  e.  ( m  u.  { a } ) M  e.  B  -> 
( (coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) ) )
7471, 72, 733imtr4g 285 . . . . 5  |-  ( ( m  e.  Fin  /\  -.  a  e.  m
)  ->  ( (
( ph  /\  A. x  e.  m  M  e.  B )  ->  (
(coe1 `  ( P  gsumg  ( x  e.  m  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  m  |->  ( (coe1 `  M ) `  K ) ) ) )  ->  ( ( ph  /\  A. x  e.  ( m  u.  {
a } ) M  e.  B )  -> 
( (coe1 `  ( P  gsumg  ( x  e.  ( m  u. 
{ a } ) 
|->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  ( m  u.  { a } )  |->  ( (coe1 `  M ) `  K
) ) ) ) ) )
7512, 22, 32, 42, 67, 74findcard2s 8201 . . . 4  |-  ( N  e.  Fin  ->  (
( ph  /\  A. x  e.  N  M  e.  B )  ->  (
(coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) ) )
7675expd 452 . . 3  |-  ( N  e.  Fin  ->  ( ph  ->  ( A. x  e.  N  M  e.  B  ->  ( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `
 K )  =  ( R  gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) ) ) )
772, 76mpcom 38 . 2  |-  ( ph  ->  ( A. x  e.  N  M  e.  B  ->  ( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) ) )
781, 77mpd 15 1  |-  ( ph  ->  ( (coe1 `  ( P  gsumg  ( x  e.  N  |->  M ) ) ) `  K
)  =  ( R 
gsumg  ( x  e.  N  |->  ( (coe1 `  M ) `  K ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650   Fincfn 7955   NN0cn0 11292   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553
This theorem is referenced by:  gsummoncoe1  19674  cpmatmcllem  20523  decpmatmullem  20576  mp2pm2mplem4  20614
  Copyright terms: Public domain W3C validator