MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1subfv Structured version   Visualization version   Unicode version

Theorem coe1subfv 19636
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1sub.y  |-  Y  =  (Poly1 `  R )
coe1sub.b  |-  B  =  ( Base `  Y
)
coe1sub.p  |-  .-  =  ( -g `  Y )
coe1sub.q  |-  N  =  ( -g `  R
)
Assertion
Ref Expression
coe1subfv  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `
 X )  =  ( ( (coe1 `  F
) `  X ) N ( (coe1 `  G
) `  X )
) )

Proof of Theorem coe1subfv
StepHypRef Expression
1 simpl1 1064 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  R  e.  Ring )
2 coe1sub.y . . . . . . . . 9  |-  Y  =  (Poly1 `  R )
32ply1ring 19618 . . . . . . . 8  |-  ( R  e.  Ring  ->  Y  e. 
Ring )
4 ringgrp 18552 . . . . . . . 8  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
53, 4syl 17 . . . . . . 7  |-  ( R  e.  Ring  ->  Y  e. 
Grp )
6 coe1sub.b . . . . . . . 8  |-  B  =  ( Base `  Y
)
7 coe1sub.p . . . . . . . 8  |-  .-  =  ( -g `  Y )
86, 7grpsubcl 17495 . . . . . . 7  |-  ( ( Y  e.  Grp  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .-  G
)  e.  B )
95, 8syl3an1 1359 . . . . . 6  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .-  G )  e.  B )
109adantr 481 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( F  .-  G )  e.  B
)
11 simpl3 1066 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  G  e.  B
)
12 simpr 477 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  X  e.  NN0 )
13 eqid 2622 . . . . . 6  |-  ( +g  `  Y )  =  ( +g  `  Y )
14 eqid 2622 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
152, 6, 13, 14coe1addfv 19635 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( F  .-  G
)  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  (
( F  .-  G
) ( +g  `  Y
) G ) ) `
 X )  =  ( ( (coe1 `  ( F  .-  G ) ) `
 X ) ( +g  `  R ) ( (coe1 `  G ) `  X ) ) )
161, 10, 11, 12, 15syl31anc 1329 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  (
( F  .-  G
) ( +g  `  Y
) G ) ) `
 X )  =  ( ( (coe1 `  ( F  .-  G ) ) `
 X ) ( +g  `  R ) ( (coe1 `  G ) `  X ) ) )
1753ad2ant1 1082 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  Y  e.  Grp )
1817adantr 481 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  Y  e.  Grp )
19 simpl2 1065 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  F  e.  B
)
206, 13, 7grpnpcan 17507 . . . . . . 7  |-  ( ( Y  e.  Grp  /\  F  e.  B  /\  G  e.  B )  ->  ( ( F  .-  G ) ( +g  `  Y ) G )  =  F )
2118, 19, 11, 20syl3anc 1326 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( F 
.-  G ) ( +g  `  Y ) G )  =  F )
2221fveq2d 6195 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  (coe1 `  ( ( F 
.-  G ) ( +g  `  Y ) G ) )  =  (coe1 `  F ) )
2322fveq1d 6193 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  (
( F  .-  G
) ( +g  `  Y
) G ) ) `
 X )  =  ( (coe1 `  F ) `  X ) )
2416, 23eqtr3d 2658 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( (coe1 `  ( F  .-  G
) ) `  X
) ( +g  `  R
) ( (coe1 `  G
) `  X )
)  =  ( (coe1 `  F ) `  X
) )
25 ringgrp 18552 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
26253ad2ant1 1082 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  R  e.  Grp )
2726adantr 481 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  R  e.  Grp )
28 eqid 2622 . . . . . . 7  |-  (coe1 `  F
)  =  (coe1 `  F
)
29 eqid 2622 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
3028, 6, 2, 29coe1f 19581 . . . . . 6  |-  ( F  e.  B  ->  (coe1 `  F ) : NN0 --> (
Base `  R )
)
31303ad2ant2 1083 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  F ) : NN0 --> (
Base `  R )
)
3231ffvelrnda 6359 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  F
) `  X )  e.  ( Base `  R
) )
33 eqid 2622 . . . . . . 7  |-  (coe1 `  G
)  =  (coe1 `  G
)
3433, 6, 2, 29coe1f 19581 . . . . . 6  |-  ( G  e.  B  ->  (coe1 `  G ) : NN0 --> (
Base `  R )
)
35343ad2ant3 1084 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  G ) : NN0 --> (
Base `  R )
)
3635ffvelrnda 6359 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  G
) `  X )  e.  ( Base `  R
) )
37 eqid 2622 . . . . . . 7  |-  (coe1 `  ( F  .-  G ) )  =  (coe1 `  ( F  .-  G ) )
3837, 6, 2, 29coe1f 19581 . . . . . 6  |-  ( ( F  .-  G )  e.  B  ->  (coe1 `  ( F  .-  G ) ) : NN0 --> ( Base `  R ) )
399, 38syl 17 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .-  G ) ) : NN0 --> ( Base `  R ) )
4039ffvelrnda 6359 . . . 4  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `
 X )  e.  ( Base `  R
) )
41 coe1sub.q . . . . 5  |-  N  =  ( -g `  R
)
4229, 14, 41grpsubadd 17503 . . . 4  |-  ( ( R  e.  Grp  /\  ( ( (coe1 `  F
) `  X )  e.  ( Base `  R
)  /\  ( (coe1 `  G ) `  X
)  e.  ( Base `  R )  /\  (
(coe1 `  ( F  .-  G ) ) `  X )  e.  (
Base `  R )
) )  ->  (
( ( (coe1 `  F
) `  X ) N ( (coe1 `  G
) `  X )
)  =  ( (coe1 `  ( F  .-  G
) ) `  X
)  <->  ( ( (coe1 `  ( F  .-  G
) ) `  X
) ( +g  `  R
) ( (coe1 `  G
) `  X )
)  =  ( (coe1 `  F ) `  X
) ) )
4327, 32, 36, 40, 42syl13anc 1328 . . 3  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( ( (coe1 `  F ) `  X ) N ( (coe1 `  G ) `  X ) )  =  ( (coe1 `  ( F  .-  G ) ) `  X )  <->  ( (
(coe1 `  ( F  .-  G ) ) `  X ) ( +g  `  R ) ( (coe1 `  G ) `  X
) )  =  ( (coe1 `  F ) `  X ) ) )
4424, 43mpbird 247 . 2  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( ( (coe1 `  F ) `  X
) N ( (coe1 `  G ) `  X
) )  =  ( (coe1 `  ( F  .-  G ) ) `  X ) )
4544eqcomd 2628 1  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  /\  X  e.  NN0 )  ->  ( (coe1 `  ( F  .-  G ) ) `
 X )  =  ( ( (coe1 `  F
) `  X ) N ( (coe1 `  G
) `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -->wf 5884   ` cfv 5888  (class class class)co 6650   NN0cn0 11292   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   -gcsg 17424   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553
This theorem is referenced by:  deg1sublt  23870  ply1remlem  23922
  Copyright terms: Public domain W3C validator