MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1remlem Structured version   Visualization version   Unicode version

Theorem ply1remlem 23922
Description: A term of the form  x  -  N is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p  |-  P  =  (Poly1 `  R )
ply1rem.b  |-  B  =  ( Base `  P
)
ply1rem.k  |-  K  =  ( Base `  R
)
ply1rem.x  |-  X  =  (var1 `  R )
ply1rem.m  |-  .-  =  ( -g `  P )
ply1rem.a  |-  A  =  (algSc `  P )
ply1rem.g  |-  G  =  ( X  .-  ( A `  N )
)
ply1rem.o  |-  O  =  (eval1 `  R )
ply1rem.1  |-  ( ph  ->  R  e. NzRing )
ply1rem.2  |-  ( ph  ->  R  e.  CRing )
ply1rem.3  |-  ( ph  ->  N  e.  K )
ply1rem.u  |-  U  =  (Monic1p `  R )
ply1rem.d  |-  D  =  ( deg1  `  R )
ply1rem.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ply1remlem  |-  ( ph  ->  ( G  e.  U  /\  ( D `  G
)  =  1  /\  ( `' ( O `
 G ) " {  .0.  } )  =  { N } ) )

Proof of Theorem ply1remlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ply1rem.g . . . 4  |-  G  =  ( X  .-  ( A `  N )
)
2 ply1rem.1 . . . . . . . 8  |-  ( ph  ->  R  e. NzRing )
3 nzrring 19261 . . . . . . . 8  |-  ( R  e. NzRing  ->  R  e.  Ring )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
5 ply1rem.p . . . . . . . 8  |-  P  =  (Poly1 `  R )
65ply1ring 19618 . . . . . . 7  |-  ( R  e.  Ring  ->  P  e. 
Ring )
74, 6syl 17 . . . . . 6  |-  ( ph  ->  P  e.  Ring )
8 ringgrp 18552 . . . . . 6  |-  ( P  e.  Ring  ->  P  e. 
Grp )
97, 8syl 17 . . . . 5  |-  ( ph  ->  P  e.  Grp )
10 ply1rem.x . . . . . . 7  |-  X  =  (var1 `  R )
11 ply1rem.b . . . . . . 7  |-  B  =  ( Base `  P
)
1210, 5, 11vr1cl 19587 . . . . . 6  |-  ( R  e.  Ring  ->  X  e.  B )
134, 12syl 17 . . . . 5  |-  ( ph  ->  X  e.  B )
14 ply1rem.a . . . . . . . 8  |-  A  =  (algSc `  P )
15 ply1rem.k . . . . . . . 8  |-  K  =  ( Base `  R
)
165, 14, 15, 11ply1sclf 19655 . . . . . . 7  |-  ( R  e.  Ring  ->  A : K
--> B )
174, 16syl 17 . . . . . 6  |-  ( ph  ->  A : K --> B )
18 ply1rem.3 . . . . . 6  |-  ( ph  ->  N  e.  K )
1917, 18ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( A `  N
)  e.  B )
20 ply1rem.m . . . . . 6  |-  .-  =  ( -g `  P )
2111, 20grpsubcl 17495 . . . . 5  |-  ( ( P  e.  Grp  /\  X  e.  B  /\  ( A `  N )  e.  B )  -> 
( X  .-  ( A `  N )
)  e.  B )
229, 13, 19, 21syl3anc 1326 . . . 4  |-  ( ph  ->  ( X  .-  ( A `  N )
)  e.  B )
231, 22syl5eqel 2705 . . 3  |-  ( ph  ->  G  e.  B )
241fveq2i 6194 . . . . . . 7  |-  ( D `
 G )  =  ( D `  ( X  .-  ( A `  N ) ) )
25 ply1rem.d . . . . . . . 8  |-  D  =  ( deg1  `  R )
2625, 5, 11deg1xrcl 23842 . . . . . . . . . . 11  |-  ( ( A `  N )  e.  B  ->  ( D `  ( A `  N ) )  e. 
RR* )
2719, 26syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( D `  ( A `  N )
)  e.  RR* )
28 0xr 10086 . . . . . . . . . . 11  |-  0  e.  RR*
2928a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR* )
30 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
31 rexr 10085 . . . . . . . . . . 11  |-  ( 1  e.  RR  ->  1  e.  RR* )
3230, 31mp1i 13 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR* )
3325, 5, 15, 14deg1sclle 23872 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  N  e.  K )  ->  ( D `  ( A `  N ) )  <_ 
0 )
344, 18, 33syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( D `  ( A `  N )
)  <_  0 )
35 0lt1 10550 . . . . . . . . . . 11  |-  0  <  1
3635a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  <  1 )
3727, 29, 32, 34, 36xrlelttrd 11991 . . . . . . . . 9  |-  ( ph  ->  ( D `  ( A `  N )
)  <  1 )
38 eqid 2622 . . . . . . . . . . . . . 14  |-  (mulGrp `  P )  =  (mulGrp `  P )
3938, 11mgpbas 18495 . . . . . . . . . . . . 13  |-  B  =  ( Base `  (mulGrp `  P ) )
40 eqid 2622 . . . . . . . . . . . . 13  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
4139, 40mulg1 17548 . . . . . . . . . . . 12  |-  ( X  e.  B  ->  (
1 (.g `  (mulGrp `  P
) ) X )  =  X )
4213, 41syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 (.g `  (mulGrp `  P ) ) X )  =  X )
4342fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( D `  (
1 (.g `  (mulGrp `  P
) ) X ) )  =  ( D `
 X ) )
44 1nn0 11308 . . . . . . . . . . 11  |-  1  e.  NN0
4525, 5, 10, 38, 40deg1pw 23880 . . . . . . . . . . 11  |-  ( ( R  e. NzRing  /\  1  e.  NN0 )  ->  ( D `  ( 1
(.g `  (mulGrp `  P
) ) X ) )  =  1 )
462, 44, 45sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( D `  (
1 (.g `  (mulGrp `  P
) ) X ) )  =  1 )
4743, 46eqtr3d 2658 . . . . . . . . 9  |-  ( ph  ->  ( D `  X
)  =  1 )
4837, 47breqtrrd 4681 . . . . . . . 8  |-  ( ph  ->  ( D `  ( A `  N )
)  <  ( D `  X ) )
495, 25, 4, 11, 20, 13, 19, 48deg1sub 23868 . . . . . . 7  |-  ( ph  ->  ( D `  ( X  .-  ( A `  N ) ) )  =  ( D `  X ) )
5024, 49syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( D `  G
)  =  ( D `
 X ) )
5150, 47eqtrd 2656 . . . . 5  |-  ( ph  ->  ( D `  G
)  =  1 )
5251, 44syl6eqel 2709 . . . 4  |-  ( ph  ->  ( D `  G
)  e.  NN0 )
53 eqid 2622 . . . . . 6  |-  ( 0g
`  P )  =  ( 0g `  P
)
5425, 5, 53, 11deg1nn0clb 23850 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( G  =/=  ( 0g `  P )  <->  ( D `  G )  e.  NN0 ) )
554, 23, 54syl2anc 693 . . . 4  |-  ( ph  ->  ( G  =/=  ( 0g `  P )  <->  ( D `  G )  e.  NN0 ) )
5652, 55mpbird 247 . . 3  |-  ( ph  ->  G  =/=  ( 0g
`  P ) )
5751fveq2d 6195 . . . 4  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  =  ( (coe1 `  G ) `  1
) )
581fveq2i 6194 . . . . . 6  |-  (coe1 `  G
)  =  (coe1 `  ( X  .-  ( A `  N ) ) )
5958fveq1i 6192 . . . . 5  |-  ( (coe1 `  G ) `  1
)  =  ( (coe1 `  ( X  .-  ( A `  N )
) ) `  1
)
6044a1i 11 . . . . . 6  |-  ( ph  ->  1  e.  NN0 )
61 eqid 2622 . . . . . . 7  |-  ( -g `  R )  =  (
-g `  R )
625, 11, 20, 61coe1subfv 19636 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  ( A `  N )  e.  B )  /\  1  e.  NN0 )  -> 
( (coe1 `  ( X  .-  ( A `  N ) ) ) `  1
)  =  ( ( (coe1 `  X ) ` 
1 ) ( -g `  R ) ( (coe1 `  ( A `  N
) ) `  1
) ) )
634, 13, 19, 60, 62syl31anc 1329 . . . . 5  |-  ( ph  ->  ( (coe1 `  ( X  .-  ( A `  N ) ) ) `  1
)  =  ( ( (coe1 `  X ) ` 
1 ) ( -g `  R ) ( (coe1 `  ( A `  N
) ) `  1
) ) )
6459, 63syl5eq 2668 . . . 4  |-  ( ph  ->  ( (coe1 `  G ) ` 
1 )  =  ( ( (coe1 `  X ) ` 
1 ) ( -g `  R ) ( (coe1 `  ( A `  N
) ) `  1
) ) )
6542oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1r `  R ) ( .s
`  P ) ( 1 (.g `  (mulGrp `  P
) ) X ) )  =  ( ( 1r `  R ) ( .s `  P
) X ) )
665ply1sca 19623 . . . . . . . . . . . . 13  |-  ( R  e. NzRing  ->  R  =  (Scalar `  P ) )
672, 66syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  R  =  (Scalar `  P ) )
6867fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  (Scalar `  P )
) )
6968oveq1d 6665 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1r `  R ) ( .s
`  P ) X )  =  ( ( 1r `  (Scalar `  P ) ) ( .s `  P ) X ) )
705ply1lmod 19622 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  P  e. 
LMod )
714, 70syl 17 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  LMod )
72 eqid 2622 . . . . . . . . . . . 12  |-  (Scalar `  P )  =  (Scalar `  P )
73 eqid 2622 . . . . . . . . . . . 12  |-  ( .s
`  P )  =  ( .s `  P
)
74 eqid 2622 . . . . . . . . . . . 12  |-  ( 1r
`  (Scalar `  P )
)  =  ( 1r
`  (Scalar `  P )
)
7511, 72, 73, 74lmodvs1 18891 . . . . . . . . . . 11  |-  ( ( P  e.  LMod  /\  X  e.  B )  ->  (
( 1r `  (Scalar `  P ) ) ( .s `  P ) X )  =  X )
7671, 13, 75syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1r `  (Scalar `  P ) ) ( .s `  P
) X )  =  X )
7765, 69, 763eqtrd 2660 . . . . . . . . 9  |-  ( ph  ->  ( ( 1r `  R ) ( .s
`  P ) ( 1 (.g `  (mulGrp `  P
) ) X ) )  =  X )
7877fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  (coe1 `  ( ( 1r
`  R ) ( .s `  P ) ( 1 (.g `  (mulGrp `  P ) ) X ) ) )  =  (coe1 `  X ) )
7978fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( (coe1 `  ( ( 1r
`  R ) ( .s `  P ) ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  ( (coe1 `  X ) ` 
1 ) )
80 eqid 2622 . . . . . . . . . 10  |-  ( 1r
`  R )  =  ( 1r `  R
)
8115, 80ringidcl 18568 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  K )
824, 81syl 17 . . . . . . . 8  |-  ( ph  ->  ( 1r `  R
)  e.  K )
83 ply1rem.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
8483, 15, 5, 10, 73, 38, 40coe1tmfv1 19644 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  K  /\  1  e. 
NN0 )  ->  (
(coe1 `  ( ( 1r
`  R ) ( .s `  P ) ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  ( 1r `  R ) )
854, 82, 60, 84syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( (coe1 `  ( ( 1r
`  R ) ( .s `  P ) ( 1 (.g `  (mulGrp `  P ) ) X ) ) ) ` 
1 )  =  ( 1r `  R ) )
8679, 85eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ( (coe1 `  X ) ` 
1 )  =  ( 1r `  R ) )
87 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  R )  =  ( 0g `  R
)
885, 14, 15, 87coe1scl 19657 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  N  e.  K )  ->  (coe1 `  ( A `  N ) )  =  ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g
`  R ) ) ) )
894, 18, 88syl2anc 693 . . . . . . . 8  |-  ( ph  ->  (coe1 `  ( A `  N ) )  =  ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g `  R ) ) ) )
9089fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( (coe1 `  ( A `  N ) ) ` 
1 )  =  ( ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g `  R ) ) ) `  1
) )
91 ax-1ne0 10005 . . . . . . . . . . 11  |-  1  =/=  0
92 neeq1 2856 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
x  =/=  0  <->  1  =/=  0 ) )
9391, 92mpbiri 248 . . . . . . . . . 10  |-  ( x  =  1  ->  x  =/=  0 )
94 ifnefalse 4098 . . . . . . . . . 10  |-  ( x  =/=  0  ->  if ( x  =  0 ,  N ,  ( 0g
`  R ) )  =  ( 0g `  R ) )
9593, 94syl 17 . . . . . . . . 9  |-  ( x  =  1  ->  if ( x  =  0 ,  N ,  ( 0g
`  R ) )  =  ( 0g `  R ) )
96 eqid 2622 . . . . . . . . 9  |-  ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g
`  R ) ) )  =  ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g
`  R ) ) )
97 fvex 6201 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
9895, 96, 97fvmpt 6282 . . . . . . . 8  |-  ( 1  e.  NN0  ->  ( ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g
`  R ) ) ) `  1 )  =  ( 0g `  R ) )
9944, 98ax-mp 5 . . . . . . 7  |-  ( ( x  e.  NN0  |->  if ( x  =  0 ,  N ,  ( 0g
`  R ) ) ) `  1 )  =  ( 0g `  R )
10090, 99syl6eq 2672 . . . . . 6  |-  ( ph  ->  ( (coe1 `  ( A `  N ) ) ` 
1 )  =  ( 0g `  R ) )
10186, 100oveq12d 6668 . . . . 5  |-  ( ph  ->  ( ( (coe1 `  X
) `  1 )
( -g `  R ) ( (coe1 `  ( A `  N ) ) ` 
1 ) )  =  ( ( 1r `  R ) ( -g `  R ) ( 0g
`  R ) ) )
102 ringgrp 18552 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
1034, 102syl 17 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
10415, 87, 61grpsubid1 17500 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  K )  -> 
( ( 1r `  R ) ( -g `  R ) ( 0g
`  R ) )  =  ( 1r `  R ) )
105103, 82, 104syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( 1r `  R ) ( -g `  R ) ( 0g
`  R ) )  =  ( 1r `  R ) )
106101, 105eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( (coe1 `  X
) `  1 )
( -g `  R ) ( (coe1 `  ( A `  N ) ) ` 
1 ) )  =  ( 1r `  R
) )
10757, 64, 1063eqtrd 2660 . . 3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  =  ( 1r
`  R ) )
108 ply1rem.u . . . 4  |-  U  =  (Monic1p `  R )
1095, 11, 53, 25, 108, 80ismon1p 23902 . . 3  |-  ( G  e.  U  <->  ( G  e.  B  /\  G  =/=  ( 0g `  P
)  /\  ( (coe1 `  G ) `  ( D `  G )
)  =  ( 1r
`  R ) ) )
11023, 56, 107, 109syl3anbrc 1246 . 2  |-  ( ph  ->  G  e.  U )
1111fveq2i 6194 . . . . . . . . . 10  |-  ( O `
 G )  =  ( O `  ( X  .-  ( A `  N ) ) )
112111fveq1i 6192 . . . . . . . . 9  |-  ( ( O `  G ) `
 x )  =  ( ( O `  ( X  .-  ( A `
 N ) ) ) `  x )
113 ply1rem.o . . . . . . . . . . 11  |-  O  =  (eval1 `  R )
114 ply1rem.2 . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  CRing )
115114adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  R  e.  CRing )
116 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  x  e.  K )
117113, 10, 15, 5, 11, 115, 116evl1vard 19701 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  ( X  e.  B  /\  ( ( O `  X ) `  x
)  =  x ) )
11818adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  K )  ->  N  e.  K )
119113, 5, 15, 14, 11, 115, 118, 116evl1scad 19699 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  K )  ->  (
( A `  N
)  e.  B  /\  ( ( O `  ( A `  N ) ) `  x )  =  N ) )
120113, 5, 15, 11, 115, 116, 117, 119, 20, 61evl1subd 19706 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  K )  ->  (
( X  .-  ( A `  N )
)  e.  B  /\  ( ( O `  ( X  .-  ( A `
 N ) ) ) `  x )  =  ( x (
-g `  R ) N ) ) )
121120simprd 479 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  ( X  .-  ( A `  N ) ) ) `
 x )  =  ( x ( -g `  R ) N ) )
122112, 121syl5eq 2668 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
( O `  G
) `  x )  =  ( x (
-g `  R ) N ) )
123122eqeq1d 2624 . . . . . . 7  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  G ) `  x
)  =  .0.  <->  ( x
( -g `  R ) N )  =  .0.  ) )
124103adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  R  e.  Grp )
12515, 83, 61grpsubeq0 17501 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  K  /\  N  e.  K )  ->  ( ( x (
-g `  R ) N )  =  .0.  <->  x  =  N ) )
126124, 116, 118, 125syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  x  e.  K )  ->  (
( x ( -g `  R ) N )  =  .0.  <->  x  =  N ) )
127123, 126bitrd 268 . . . . . 6  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  G ) `  x
)  =  .0.  <->  x  =  N ) )
128 velsn 4193 . . . . . 6  |-  ( x  e.  { N }  <->  x  =  N )
129127, 128syl6bbr 278 . . . . 5  |-  ( (
ph  /\  x  e.  K )  ->  (
( ( O `  G ) `  x
)  =  .0.  <->  x  e.  { N } ) )
130129pm5.32da 673 . . . 4  |-  ( ph  ->  ( ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  .0.  )  <->  ( x  e.  K  /\  x  e.  { N } ) ) )
131 eqid 2622 . . . . . . 7  |-  ( R  ^s  K )  =  ( R  ^s  K )
132 eqid 2622 . . . . . . 7  |-  ( Base `  ( R  ^s  K ) )  =  ( Base `  ( R  ^s  K ) )
133 fvex 6201 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
13415, 133eqeltri 2697 . . . . . . . 8  |-  K  e. 
_V
135134a1i 11 . . . . . . 7  |-  ( ph  ->  K  e.  _V )
136113, 5, 131, 15evl1rhm 19696 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  O  e.  ( P RingHom  ( R  ^s  K
) ) )
137114, 136syl 17 . . . . . . . . 9  |-  ( ph  ->  O  e.  ( P RingHom 
( R  ^s  K ) ) )
13811, 132rhmf 18726 . . . . . . . . 9  |-  ( O  e.  ( P RingHom  ( R  ^s  K ) )  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
139137, 138syl 17 . . . . . . . 8  |-  ( ph  ->  O : B --> ( Base `  ( R  ^s  K ) ) )
140139, 23ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( O `  G
)  e.  ( Base `  ( R  ^s  K ) ) )
141131, 15, 132, 2, 135, 140pwselbas 16149 . . . . . 6  |-  ( ph  ->  ( O `  G
) : K --> K )
142 ffn 6045 . . . . . 6  |-  ( ( O `  G ) : K --> K  -> 
( O `  G
)  Fn  K )
143141, 142syl 17 . . . . 5  |-  ( ph  ->  ( O `  G
)  Fn  K )
144 fniniseg 6338 . . . . 5  |-  ( ( O `  G )  Fn  K  ->  (
x  e.  ( `' ( O `  G
) " {  .0.  } )  <->  ( x  e.  K  /\  ( ( O `  G ) `
 x )  =  .0.  ) ) )
145143, 144syl 17 . . . 4  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " {  .0.  } )  <->  ( x  e.  K  /\  (
( O `  G
) `  x )  =  .0.  ) ) )
14618snssd 4340 . . . . . 6  |-  ( ph  ->  { N }  C_  K )
147146sseld 3602 . . . . 5  |-  ( ph  ->  ( x  e.  { N }  ->  x  e.  K ) )
148147pm4.71rd 667 . . . 4  |-  ( ph  ->  ( x  e.  { N }  <->  ( x  e.  K  /\  x  e. 
{ N } ) ) )
149130, 145, 1483bitr4d 300 . . 3  |-  ( ph  ->  ( x  e.  ( `' ( O `  G ) " {  .0.  } )  <->  x  e.  { N } ) )
150149eqrdv 2620 . 2  |-  ( ph  ->  ( `' ( O `
 G ) " {  .0.  } )  =  { N } )
151110, 51, 1503jca 1242 1  |-  ( ph  ->  ( G  e.  U  /\  ( D `  G
)  =  1  /\  ( `' ( O `
 G ) " {  .0.  } )  =  { N } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937   RR*cxr 10073    < clt 10074    <_ cle 10075   NN0cn0 11292   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100    ^s cpws 16107   Grpcgrp 17422   -gcsg 17424  .gcmg 17540  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712   LModclmod 18863  NzRingcnzr 19257  algSccascl 19311  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548  eval1ce1 19679   deg1 cdg1 23814  Monic1pcmn1 23885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-nzr 19258  df-rlreg 19283  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553  df-evl1 19681  df-cnfld 19747  df-mdeg 23815  df-deg1 23816  df-mon1 23890
This theorem is referenced by:  ply1rem  23923  facth1  23924  fta1glem1  23925  fta1glem2  23926
  Copyright terms: Public domain W3C validator