MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshash Structured version   Visualization version   Unicode version

Theorem cshwshash 15811
Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m  |-  M  =  { w  e. Word  V  |  E. n  e.  ( 0..^ ( # `  W
) ) ( W cyclShift  n )  =  w }
Assertion
Ref Expression
cshwshash  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  (
( # `  M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) )
Distinct variable groups:    n, V, w    n, W, w
Allowed substitution hints:    M( w, n)

Proof of Theorem cshwshash
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 repswsymballbi 13527 . . . . 5  |-  ( W  e. Word  V  ->  ( W  =  ( ( W `  0 ) repeatS  (
# `  W )
)  <->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) ) )
21adantr 481 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  ( W  =  ( ( W `  0 ) repeatS  (
# `  W )
)  <->  A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
) ) )
3 prmnn 15388 . . . . . . . . 9  |-  ( (
# `  W )  e.  Prime  ->  ( # `  W
)  e.  NN )
43nnge1d 11063 . . . . . . . 8  |-  ( (
# `  W )  e.  Prime  ->  1  <_  (
# `  W )
)
5 wrdsymb1 13342 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  1  <_  ( # `  W
) )  ->  ( W `  0 )  e.  V )
64, 5sylan2 491 . . . . . . 7  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  ( W `  0 )  e.  V )
76adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  W  =  (
( W `  0
) repeatS  ( # `  W
) ) )  -> 
( W `  0
)  e.  V )
83ad2antlr 763 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  W  =  (
( W `  0
) repeatS  ( # `  W
) ) )  -> 
( # `  W )  e.  NN )
9 simpr 477 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  W  =  (
( W `  0
) repeatS  ( # `  W
) ) )  ->  W  =  ( ( W `  0 ) repeatS  (
# `  W )
) )
10 cshwrepswhash1.m . . . . . . 7  |-  M  =  { w  e. Word  V  |  E. n  e.  ( 0..^ ( # `  W
) ) ( W cyclShift  n )  =  w }
1110cshwrepswhash1 15809 . . . . . 6  |-  ( ( ( W `  0
)  e.  V  /\  ( # `  W )  e.  NN  /\  W  =  ( ( W `
 0 ) repeatS  ( # `
 W ) ) )  ->  ( # `  M
)  =  1 )
127, 8, 9, 11syl3anc 1326 . . . . 5  |-  ( ( ( W  e. Word  V  /\  ( # `  W
)  e.  Prime )  /\  W  =  (
( W `  0
) repeatS  ( # `  W
) ) )  -> 
( # `  M )  =  1 )
1312ex 450 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  ( W  =  ( ( W `  0 ) repeatS  (
# `  W )
)  ->  ( # `  M
)  =  1 ) )
142, 13sylbird 250 . . 3  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  ( A. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
)  ->  ( # `  M
)  =  1 ) )
15 olc 399 . . 3  |-  ( (
# `  M )  =  1  ->  (
( # `  M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) )
1614, 15syl6com 37 . 2  |-  ( A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
)  ->  ( ( W  e. Word  V  /\  ( # `
 W )  e. 
Prime )  ->  ( (
# `  M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) ) )
17 rexnal 2995 . . . 4  |-  ( E. i  e.  ( 0..^ ( # `  W
) )  -.  ( W `  i )  =  ( W ` 
0 )  <->  -.  A. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =  ( W ` 
0 ) )
18 df-ne 2795 . . . . . 6  |-  ( ( W `  i )  =/=  ( W ` 
0 )  <->  -.  ( W `  i )  =  ( W ` 
0 ) )
1918bicomi 214 . . . . 5  |-  ( -.  ( W `  i
)  =  ( W `
 0 )  <->  ( W `  i )  =/=  ( W `  0 )
)
2019rexbii 3041 . . . 4  |-  ( E. i  e.  ( 0..^ ( # `  W
) )  -.  ( W `  i )  =  ( W ` 
0 )  <->  E. i  e.  ( 0..^ ( # `  W ) ) ( W `  i )  =/=  ( W ` 
0 ) )
2117, 20bitr3i 266 . . 3  |-  ( -. 
A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
)  <->  E. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =/=  ( W `  0
) )
2210cshwshashnsame 15810 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  ( E. i  e.  (
0..^ ( # `  W
) ) ( W `
 i )  =/=  ( W `  0
)  ->  ( # `  M
)  =  ( # `  W ) ) )
23 orc 400 . . . 4  |-  ( (
# `  M )  =  ( # `  W
)  ->  ( ( # `
 M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) )
2422, 23syl6com 37 . . 3  |-  ( E. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =/=  ( W `  0
)  ->  ( ( W  e. Word  V  /\  ( # `
 W )  e. 
Prime )  ->  ( (
# `  M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) ) )
2521, 24sylbi 207 . 2  |-  ( -. 
A. i  e.  ( 0..^ ( # `  W
) ) ( W `
 i )  =  ( W `  0
)  ->  ( ( W  e. Word  V  /\  ( # `
 W )  e. 
Prime )  ->  ( (
# `  M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) ) )
2616, 25pm2.61i 176 1  |-  ( ( W  e. Word  V  /\  ( # `  W )  e.  Prime )  ->  (
( # `  M )  =  ( # `  W
)  \/  ( # `  M )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    <_ cle 10075   NNcn 11020  ..^cfzo 12465   #chash 13117  Word cword 13291   repeatS creps 13298   cyclShift ccsh 13534   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-reps 13306  df-csh 13535  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471
This theorem is referenced by:  hashecclwwlksn1  26954
  Copyright terms: Public domain W3C validator